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Abstract

The ocean’s large, microbially mediated reservoirs of carbon are intimately connected with atmospheric CO2

and climate, yet quantifying the feedbacks between them remains an unresolved challenge. Through an

idealized mechanistic model, we consider the impact of documented climate change during the past few deca-

des on the efficiency of biological carbon export out of the surface ocean. This model is grounded in universal

metabolic phenomena, describing export efficiency’s temperature dependence in terms of the differential tem-

perature sensitivity of phototrophic and heterotrophic metabolism. Temperature changes are suggested to have

caused a statistically significant decrease in export efficiency of 1.5% 6 0.4% over the past 33 yr. Larger changes

are suggested in the midlatitudes and Arctic. This interpretation is robust across multiple sea surface tempera-

ture and net primary production data products. The same metabolic mechanism may have resulted in much

larger changes e.g., in response to the large temperature shifts between glacial and interglacial time periods.

The ocean’s “biological pumps” sustain large reservoirs of

carbon, mediated by microbial activity, with significant

leverage on atmospheric CO2 and climate (Volk and Hoffert

1985). While the general significance of the biological

pumps for the carbon cycle and climate is clearly demon-

strated (Volk and Hoffert 1985; Cox et al. 2000) the details
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Scientific Significance Statement
The ocean’s biologically mediated carbon reservoirs are an integral component of the global carbon cycle, and may feed

back on climate if the total carbon exported out of the surface ocean is affected by surface temperatures. However, the

magnitude of this feedback is difficult to quantify. Using long-term temperature records and a simple metabolic model, we

show a 1.5% 6 0.4% decline in the fraction of primary production removed from the surface ocean over the past three dec-

ades of climate change, suggesting increased global temperatures have reduced the efficiency with which the ocean exports

carbon into the deep. The larger temperature changes in Earth’s history may have reduced this efficiency much more so.
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of their relationship remain elusive (Boyd 2015). Under-

standing the current functioning of the biological pumps is

limited because in situ data is sparse (Boyd and Trull 2007),

data collection is difficult and expensive, and the system is

extremely complex and variable (Buesseler and Boyd 2009).

Even so, there exists a clear and quantifiable imprint of

metabolic sensitivity to temperature in the ocean system

(e.g., Eppley 1972), which can be exploited to understand

global changes in carbon export with climate change. In par-

ticular, differential sensitivities of phototrophic and hetero-

trophic metabolisms to environmental temperature are

documented (Eppley 1972; Huntley and Lopez 1992), and a

model of their effect on export efficiency (ef, the ratio of the

flux of organic matter exported across the base of the

euphotic zone to the integrated primary production within

that layer) explains the observed dependence of ef on tem-

perature (Cael and Follows 2016).

Here we ask: how has the documented trend in global

ocean temperatures over the past few decades impacted the

efficiency of this export flux? We use temperature records

with the above model to infer temperature’s contribution to

global change in ef through time. We focus on multidecadal

changes (after Henson et al. 2010) over the past 33 yr (the

duration over which suitable data products are available)

using multiple data products to examine the sensitivity of

calculated changes to inputs used.

A metabolic model of export efficiency

Export efficiency is a combination of growth, respiration,

sinking, remineralization, and other processes. It has primar-

ily been considered as a function of temperature (T), primary

production (P), and community structure (i.e., the size dis-

tribution of plankton, who is eating whom, and so forth)

(Michaels and Silver 1988; Eppley 1989; Laws et al. 2000).

While all three are important, community structure variables

and their influence on ef are challenging to assess, quantify,

and measure, making an estimation of how recent climatic

shifts have produced global shifts in ef via community struc-

ture challenging. Previous studies disagree substantially on

both global trends in P (Siegel et al. 2013; Behrenfeld et al.

2016; and references therein) and the relationship between

ef and P (Buesseler 1998; Laws et al. 2011; Maiti et al. 2013),

making an estimation of how climatic shifts have affected ef

via P similarly intractable.

In contrast, global trends in sea surface temperature (SST)

over the past few decades are well-characterized (IPCC 2014).

SST is commonly used as a proxy for upper-ocean tempera-

ture, is anticorrelated with ef (e.g., Laws et al. 2000; Henson

et al. 2011), and is also one of the only variables for which

long-term, global observational records exist (Ishii et al.

2005; Reynolds et al. 2007; Dee et al. 2011). Do SST observa-

tions, suggest a shift in ef?

Recently, a simple model was proposed (Cael and Follows

2016; herein the model will be referred to as CF16) to

explain the ef-T relationship seen in observations. Heterotro-

phic and phototrophic growth rates increase with tempera-

ture, but the former increase more so (Eppley 1972; Huntley

and Lopez 1992); metabolic ecological theory relates this to

the different activation energies of respiration and photosyn-

thesis (Lopez-Urrutia et al. 2006). As originally posited in

Laws et al. (2000), this differential dependence suggests that

increasing temperatures should increase community respira-

tion relative to production and therefore decrease ef. Rather

than absorbing these dependencies into a numerical food-

web model as in Laws et al. (2000), CF16 considers ef as a

random variable scaled by temperature according to these

dependencies, and this description is shown to be consistent

with observations. We refer the reader to Cael and Follows

(2016) for a full description and discussion of CF16, but

describe it briefly below.

Within a basic differential equation for plankton biomass

p in the euphotic layer,

_p5lp2kp2k0p2wp (1)

where l is the growth rate, k is the grazing rate, k0 is the loss

rate due to factors other than grazing, and w is the sinking

rate, in steady state ef 5
wp
lp can be written as

ef 512
k1k0

l
(2)

Then one can find the maximum efficiency by neglecting k0

and incorporating the temperature dependencies of photo-

trophy and heterotrophy as l / e0:063T ; k / e0:11T . This yields

a curve of maximum export efficiency as a function of

temperature:

efmaxðTÞ512aebT (3)

where the parameter* a is one minus the maximum effi-

ciency at T 5 0, which is estimated empirically to be a50:24,

and the parameter b50:1120:06350:047. ef values can be

rescaled by efmaxðTÞ to extract this temperature dependence;

that is, ef =efmaxðTÞ is variable but independent of tempera-

ture, suggesting that this rescaling captures all of the temper-

ature dependency of ef (Cael and Follows 2016).

Here we then use this temperature scaling to derive an

average hef i as a function of temperature†:

*Figure S1 (see Supporting Information) shows the sensitivity of
CF16 to changes in the parameters a and b.
†h ~ef i50:37 for the observations used in Cael and Follows (2016) so
we use that value here nominally, though we note the value of this
factor is largely irrelevant for the analyses of this paper because we
focus on percent changes.
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hef iðTÞ5h ~ef i3efmaxðTÞ: (4)

While empirical models have been proposed to relate tem-

perature to ef (Laws et al. 2000, 2011; Dunne et al. 2005;

Henson et al. 2011), we focus on CF16 because it isolates a

single, understood metabolic mechanism—the hypothesized

and observed differential response of temperature on photo-

trophic and heterotrophic metabolisms. We emphasize that

CF16 does not seek to be a complete model for or explain all

the variability in ef; it isolates the variability in ef due to the

differential temperature effect on metabolism. Because the dif-

ferential temperature response is assumed to arise from chem-

ical kinetics, namely the activation energies of respiration and

photosynthesis, it is assumed to be constant over time.

Figure 1 shows the estimated percent change of hef i
resulting from a temperature change from Told to Tnew as

predicted by CF16. Percent changes are a function of both,

and as Eq. 4 varies by a factor of three from low to high

temperatures, percent changes in response to large tempera-

ture differences can be very large. Note that temperature

differences shown in Fig. 1 are larger than those that have

been observed over the past 33 yr, which are <1�C (IPCC

2014).

Global estimates of multidecadal change in ef

CF16 can be used to calculate hef i from SST,‡ so it can be

used to infer trends in globally averaged ef (for which we

will use the symbol§ hhef ii) from SST reanalyses. Does CF16

indicate a trend? Is this trend consistent between data

products?

To test these questions, we generate three time series of

hef i from different SST reanalyses and Eq. 4. We use the

ECMWF ERA-Interim SST (Dee et al. 2011), the NOAA OISST

(Reynolds et al. 2007), and the ESRL COBE-SST (Ishii et al.

2005) products. Description and discussion of how these

reanalyses are developed can be found in the above referen-

ces. For consistent comparison, we use a common

� spatial resolution of 1�, the resolution of the coarsest

product

� temporal resolution of 1 month, i.e., monthly averages

available for each product

� start time of January 1982, the January of the earliest year

common to all three products

� end time of December 2014, the December of the latest

year common to all three products

From each SST product we compute global time series of

hef i for each 1� bin.

Because we define hhef ii as the ratio of globally integrated

export flux to globally integrated production, to compute it

hef i for each 1� bin must be weighted by both area and P.

We use climatologies¶ from the two most common algo-

rithms to estimate P: the Carbon-based Productivity Model

(CbPMv2) (Westberry et al. 2008), and the Vertically

Fig. 1. Percent change in hef i after a temperature change, as estimated
by CF16 (see Eq. 3), as a function of the initial and final temperatures

(Told and Tnew). Contours are spaced at 5%.

Table 1. Percent change in hhef ii, during the period 1982–
2014, as estimated by CF16, for different data products. All
changes suggest a decrease in hhef ii and are statistically signifi-
cant (p<0.001; see Supporting Information). Mean and stand-
ard deviation of percent change across each SST-P pair are
21:5%60:4%.

SST P % Change

ERA CbPMv2 20.83

ERA VGPM 21.12

COBE CbPMv2 21.55

COBE VGPM 21.98

OISST CbPMv2 21.52

OISST VGPM 21.91

‡As a proxy for upper-ocean temperature.
§All export efficiency notation: ef :¼ export flux divided by primary
production. P :¼ primary production. T :¼ temperature. efmaxðTÞ
:¼ theoretical maximum ef for a given temperature. a50:24: one
minus the maximum efficiency at T 5 0, b50:047: the differential
temperature sensitivity of phototrophy and heterotrophy.
~ef :¼ ef=efmaxðTÞ. hef i :¼ mean ef averaged over a spatial region,
e.g., a 1� box or a latitudinal band. hhef ii :¼ globally averaged ef.
¶Both available at http://www.science.oregonstate.edu/ocean.
productivity/standard.product.php. We use climatologies rather
than time series because of the lack of P time series over the dura-
tion of the SST time series. This is justifiable in light of the disagree-
ment on global trends in P (Siegel et al. 2013; Behrenfeld et al.
2016).
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Generalized Productivity Model (VGPM) (Behrenfeld and Fal-

kowski 1997). In total, the time series hhef iiðtÞ is calculated

by

hhef iiðtÞ :¼

X
x;y

Aðx; yÞPðx; y; t mod 12Þhef iðx; y; tÞ
X

x;y
Aðx; yÞPðx; y; t mod 12Þ

(5)

where (x, y) are latitude and longitude, A(x, y) is the area of

the 1�31� box at (x, y), and t mod 12 is the month of the P-

climatology.

The above three SST and two P products yield six time

series of hhef iiðtÞ. We regress each against time using the

simplest statistical model that resolves a seasonal cycle and a

linear trend:

hhef iiðtÞ5mt1bðmonthÞ1error (6)

regressing hhef iiðtÞ against a time variable that runs t51;2;

. . . along with an indicator variable for each month (see Sup-

porting Information). To estimate statistical significance of

the trends, we use both the standard method and two resam-

pling methods, one of which accounts for autocorrelation in

the time series (see Supporting Information). The estimated

rates of change m can be multiplied by the duration of the

time series to estimate a percent change in hhef iiðtÞ from

1982 to 2014 for each SST-P pair; see Table 1.

Independent of SST and P product, a global decline in hhef ii
is observed of 1.5% 6 0.4%, where the uncertainty is the stand-

ard deviation across SST-P pairs. All declines are found to be

significant (p<0.001) by all three significance estimation proce-

dures. Over the entire timeseries, CF16 predicts a hhef ii value of

0.128 6 0:016.

How consequential is a 1.5% 6 0.4% decrease in hhef ii? A

simple box model of the carbon cycle (Ito and Follows 2005;

Williams and Follows 2011; see Supporting Information) sug-

gests a 1.5% 6 0.4% decline in hhef ii would result in a

1.2% 6 0.3% increase in the mixing ratio of atmospheric

CO2 on millennial timescales (when the solubility pump has

equilibrated but prior to carbonate compensation). General-

izing this result, the sensitivity of the soft-tissue carbon

pump to changes in mean sea surface temperature is pre-

dicted to be � 7 ppm K21, comparable to the � 10 ppm K21

sensitivity of the solubility pump to global mean ocean tem-

perature suggested by theory and models (Williams and Fol-

lows 2011, their Fig. 13.9b). Interestingly, the combined

sensitivity of solubility and metabolic effects predicts a � 70

ppm drawdown of atmospheric CO2 for a 4K global cooling

of the ocean associated with the last Glacial Maximum

(Adkins et al. 2002).

We note that substantial latitudinal variation in SST

trends have occurred during the record of these SST rean-

alyses. Thus, we employ the same procedure as above, but

only averaging zonally, yielding an estimated percent

change in hef i (here the ratio of longitudinally integrated

export flux to longitudinally integrated production) at

each degree of latitude from 1982 to 2014. See Fig. 2; sub-

stantial latitudinal variation exists, with percent changes

ranging between 12% and 28%. hef i in the Southern

Ocean increases slightly, corresponding to cooling, while

hef i changes little in the tropics where SST is high. Thus,

it appears the global decrease of 1–2% is driven by

decreases in the Arctic and at midlatitudes, where hef i
decreases on the order of 5%. While variation exists

between each of the six SST-P pairs, their latitudinal

dependence is similar.

Conclusion

Neither the existence, magnitude, nor driving mecha-

nisms of a change in the biological pump over the past few

decades of recent climate change can be established defini-

tively. This is an unavoidable result of searching for small

shifts in a system exhibiting substantial variability on all

time scales that is challenging to measure adequately.

Fig. 2. Percent change in hef i from 1982 to 2014, as estimated by CF16, as a function of latitude, for different data products. Color corresponds to
SST product and line type to P product. Black curve is the average across the SST-P pairs.
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A simple metabolic perspective accounting for the differen-

tial temperature dependencies of autotrophy and heterotro-

phy underpins a model of export efficiency, which explains

its observed dependence on temperature. Driving that model

with observed changes in SST leads to a suggestion that

global export efficiency has decreased 1.5% 6 0.4% over the

past few decades, with larger decreases in midlatitudes and

Arctic. This decrease is robust across SST and primary pro-

duction data products. Larger temperature differences than

those observed over the past few decades are predicted to

cause larger changes in global export efficiency.
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