144 research outputs found

    Interpretation of the near-IR spectra of the Kuiper Belt Object (136472) 2005 FY_9

    Get PDF
    Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY_9 have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low-porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions: (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice

    Contrasting the direct radiative effect and direct radiative forcing of aerosols

    Get PDF
    The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm[superscript −2] and a DRE of −1.83 Wm[superscript −2] for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm[superscript −2] for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.United States. Environmental Protection Agency (EPA STAR Program)Massachusetts Institute of Technology (Charles E. Reed Faculty Initiative Fund)United States. Environmental Protection Agency (grant/cooperative agreement (RD-83503301)

    Long-term stability of TES satellite radiance measurements

    Get PDF
    The utilization of Tropospheric Emission Spectrometer (TES) Level 2 (L2) retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B) radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO) profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST) are used as input to the Optimal Spectral Sampling (OSS) radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view) and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations) in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2), particularly well-mixed species such as carbon dioxide and methane

    Millimeter and sub-millimeter atmospheric performance at Dome C combining radiosoundings and ATM synthetic spectra

    Full text link
    The reliability of astronomical observations at millimeter and sub-millimeter wavelengths closely depends on a low vertical content of water vapor as well as on high atmospheric emission stability. Although Concordia station at Dome C (Antarctica) enjoys good observing conditions in this atmospheric spectral windows, as shown by preliminary site-testing campaigns at different bands and in, not always, time overlapped periods, a dedicated instrument able to continuously determine atmospheric performance for a wide spectral range is not yet planned. In the absence of such measurements, in this paper we suggest a semi-empirical approach to perform an analysis of atmospheric transmission and emission at Dome C to compare the performance for 7 photometric bands ranging from 100 GHz to 2 THz. Radiosoundings data provided by the Routine Meteorological Observations (RMO) Research Project at Concordia station are corrected by temperature and humidity errors and dry biases and then employed to feed ATM (Atmospheric Transmission at Microwaves) code to generate synthetic spectra in the wide spectral range from 100 GHz to 2 THz. To quantify the atmospheric contribution in millimeter and sub-millimeter observations we are considering several photometric bands in which atmospheric quantities are integrated. The observational capabilities of this site at all the selected spectral bands are analyzed considering monthly averaged transmissions joined to the corresponding fluctuations. Transmission and pwv statistics at Dome C derived by our semi-empirical approach are consistent with previous works. It is evident the decreasing of the performance at high frequencies. We propose to introduce a new parameter to compare the quality of a site at different spectral bands, in terms of high transmission and emission stability, the Site Photometric Quality Factor.Comment: accepted to MNRAS with minor revision

    HCOOH measurements from space: TES retrieval algorithm and observed global distribution

    Get PDF
    Presented is a detailed description of the TES (Tropospheric Emission Spectrometer)-Aura satellite formic acid (HCOOH) retrieval algorithm and initial results quantifying the global distribution of tropospheric HCOOH. The retrieval strategy, including the optimal estimation methodology, spectral microwindows, a priori constraints, and initial guess information, are provided. A comprehensive error and sensitivity analysis is performed in order to characterize the retrieval performance, degrees of freedom for signal, vertical resolution, and limits of detection. These results show that the TES HCOOH retrievals (i) typically provide at best 1.0 pieces of information; (ii) have the most vertical sensitivity in the range from 900 to 600 hPa with ~ 2 km vertical resolution; (iii) require at least 0.5 ppbv (parts per billion by volume) of HCOOH for detection if thermal contrast is greater than 5 K, and higher concentrations as thermal contrast decreases; and (iv) based on an ensemble of simulated retrievals, are unbiased with a standard deviation of ±0.4 ppbv. The relative spatial distribution of tropospheric HCOOH derived from TES and its associated seasonality are broadly correlated with predictions from a state-of-the-science chemical transport model (GEOS-Chem CTM). However, TES HCOOH is generally higher than is predicted by GEOS-Chem, and this is in agreement with recent work pointing to a large missing source of atmospheric HCOOH. The model bias is especially pronounced in summertime and over biomass burning regions, implicating biogenic emissions and fires as key sources of the missing atmospheric HCOOH in the model

    Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    Get PDF
    Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model : TES regressions are generally consistent with the model : aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS > 0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 1.0, 0.05 and 8.6 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.75 for expanding canopies with leaf area index < 2.0) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of IASI, TES, and ground-based measurements

    Radiative Flux and Forcing Parameterization Error in Aerosol-Free Clear Skies

    Get PDF
    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. A dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations

    Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    Get PDF
    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations
    • …
    corecore