190 research outputs found
CONSORT recommendations in abstracts of randomised, controlled trials on migraine and headache
A CONSORT statement on the content of abstracts of randomised, controlled trials (RCTs) was published in 2008. I therefore reviewed the abstracts from 2009 to 2010 published on RCTs in Cephalalgia, Headache and other (non-headache) journals. The following items were reviewed: number of patients, reporting of response either in percentages or absolute values, the use of p values, and effect size with its precision. The latter was recommended in the CONSORT statement. A total of 46 abstracts were reviewed and effect size with 95% confidence intervals was only reported in seven abstracts. The influence of the CONSORT statement on reporting in abstracts has so far only had a limited influence on the headache literature
Chronic migraine plus medication overuse headache: two entities or not?
Chronic migraine (CM) represents migraine natural evolution from its episodic form. It is realized through a chronicization phase that may require months or years and varies from patient to patient. The transition to more frequent attacks pattern is influenced by lifestyle, life events, comorbid conditions and personal genetic terrain, and it often leads to acute drugs overuse. Medication overuse headache (MOH) may complicate every type of headache and all the drugs employed for headache treatment can cause MOH. The first step in the management of CM complicated by medication overuse must be the withdrawal of the overused drugs and a detoxification treatment. The goal is not only to detoxify the patient and stop the chronic headache but also to improve responsiveness to acute or prophylactic drugs. Different methods have been suggested: gradual or abrupt withdrawal; home treatment, hospitalization, or a day-hospital setting; re-prophylaxes performed immediately or at the end of the wash-out period. Up to now, only topiramate and local injection of onabotulinumtoxinA have shown efficacy as therapeutic agents for re-prophylaxis after detoxification in patients with CM with and without medication overuse. Although the two treatments showed similar efficacy, onabotulinumtoxinA is associated with a better adverse events profile. Recently, the Phase III Research Evaluating Migraine Prophylaxis Therapy (PREEMPT) clinical program proved that patients with CM, even those with MOH, are the ones most likely to benefit from onabotulinumtoxinA treatment. Furthermore, it provided an injection paradigm that can be used as a guide for a correct administration of onabotulinumtoxinA
Study on Phylogenetic Relationships, Variability, and Correlated Mutations in M2 Proteins of Influenza Virus A
M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs
Chance mechanisms affecting the burden of metastases
BACKGROUND: The burden of cancer metastases within an individual is commonly used to clinically characterize a tumor's biological behavior. Assessments like these implicitly assume that spurious effects can be discounted. Here the influence of chance on the burden of metastasis is studied to determine whether or not this assumption is valid. METHODS: Monte Carlo simulations were performed to estimate tumor burdens sustained by individuals with cancer, based upon empirically derived and validated models for the number and size distributions of metastases. Factors related to the intrinsic metastatic potential of tumors and their host microenvironments were kept constant, to more clearly demonstrate the contribution from chance. RESULTS: Under otherwise identical conditions, both the simulated numbers and the sizes of metastases were highly variable. Comparable individuals could sustain anywhere from no metastases to scores of metastases, and the sizes of the metastases ranged from microscopic to macroscopic. Despite the marked variability in the number and sizes of the metastases, their respective growth times were rather more narrowly distributed. In such situations multiple occult metastases could develop into fully overt lesions within a comparatively short time period. CONCLUSION: Chance can have a major effect on the burden of metastases. Random variability can be so great as to make individual assessments of tumor biology unreliable, yet constrained enough to lead to the apparently simultaneous appearance of multiple overt metastases
Childhood Asthma and Environmental Exposures at Swimming Pools: State of the Science and Research Recommendations
OBJECTIVES:
Recent studies have explored the potential for swimming pool disinfection by-products (DBPs), which are respiratory irritants, to cause asthma in young children. Here we describe the state of the science on methods for understanding children's exposure to DBPs and biologics at swimming pools and associations with new-onset childhood asthma and recommend a research agenda to improve our understanding of this issue.
DATA SOURCES:
A workshop was held in Leuven, Belgium, 21-23 August 2007, to evaluate the literature and to develop a research agenda to better understand children's exposures in the swimming pool environment and their potential associations with new-onset asthma. Participants, including clinicians, epidemiologists, exposure scientists, pool operations experts, and chemists, reviewed the literature, prepared background summaries, and held extensive discussions on the relevant published studies, knowledge of asthma characterization and exposures at swimming pools, and epidemiologic study designs.
SYNTHESIS:
Childhood swimming and new-onset childhood asthma have clear implications for public health. If attendance at indoor pools increases risk of childhood asthma, then concerns are warranted and action is necessary. If there is no such relationship, these concerns could unnecessarily deter children from indoor swimming and/or compromise water disinfection.
CONCLUSIONS:
Current evidence of an association between childhood swimming and new-onset asthma is suggestive but not conclusive. Important data gaps need to be filled, particularly in exposure assessment and characterization of asthma in the very young. Participants recommended that additional evaluations using a multidisciplinary approach are needed to determine whether a clear association exists
Tension Type Headache in Adolescence and Childhood: Where Are We Now?
Tension type headache (TTH) is a primary headache disorder considered common in children and adolescents. It remains debatable whether TTH and migraine are separate biological entities. This review summarizes the most recent literature of TTH with regards to children and adolescents. Further studies of TTH are needed to develop a biologically based classification system that may be facilitated through understanding changes in the developing brain during childhood and adolescence
Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol
The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection
Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis
Bacillus thuringiensis Vip3 (Vegetative Insecticidal Protein 3) toxins are widely used in biotech crops to control Lepidopteran pests. These proteins are produced as inactive protoxins that need to be activated by midgut proteases to trigger cell death. However, little is known about their three-dimensional organization and activation mechanism at the molecular level. Here, we have determined the structures of the protoxin and the protease-activated state of Vip3Aa at 2.9 Å using cryo-electron microscopy. The reconstructions show that the protoxin assembles into a pyramid-shaped tetramer with the C-terminal domains exposed to the solvent and the N-terminal region folded into a spring-loaded apex that, after protease activation, drastically remodels into an extended needle by a mechanism akin to that of influenza haemagglutinin. These results provide the molecular basis for Vip3 activation and function, and serves as a strong foundation for the development of more efficient insecticidal proteins
Fractional deuteration applied to biomolecular solid-state NMR spectroscopy
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR
Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel
The envelope (E) protein from coronaviruses is a small polypeptide that contains at least one α-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA), but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV) that the transmembrane domain of E protein (ETM) forms pentameric α-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular α-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293) cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA), but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target
- …
