45 research outputs found

    Changes in size and age at maturity of the northern stock of Tilefish (Lopholatilus chamaeleonticeps) after a period of overfishing

    Get PDF
    The modern fishery for Tilefish (Lopholatilus chamaeleonticeps) developed during the 1970s, offshore of southern New England, in the western North Atlantic Ocean. The population quickly became over exploited, with documented declines in catch rates and changes in demographic traits. In an earlier study, median size at maturity (L50) of males declined from 62.6 to 38.6 cm fork length (FL) and median age at maturity (A50) of males declined from 7.1 to 4.6 years between 1978 and 1982. As part of a cooperative research effort to improve the data-limited Tilefish assessment, we updated maturity parameter estimates through the use of an otolith aging method and macroscopic and microscopic evaluations of gonads. The vital rates for this species have continued to change, particularly for males. By 2008, male L50 and A50 had largely rebounded, to 54.1 cm FL and 5.9 years. Changes in female reproductive schedules were less variable among years, but the smallest L50 and youngest A50 were recorded in 2008. Tilefish are dimorphic, where the largest fish are male, and male spawning success is postulated to be socially mediated. These traits may explain the initial rapid decline and the subsequent rebound in male L50 and A50 and less dramatic effects on females. Other factors that likely contribute to the dynamics of maturity parameter estimates are the relatively short period of overfishing and the amount of time since efforts to rebuild this fishery began, as measured in numbers of generations. This study also confirms the gonochoristic sexual pattern of the northern stock, and it reveals evidence of age truncation and relatively high proportions of immature Tilefish in the recent catch

    Integrating genetic analysis of mixed populations with a spatially explicit population dynamics model

    Get PDF
    1. Inferring the dynamics of populations in time and space is a central challenge in ecology. Intra-specific structure (for example genetically distinct sub-populations or meta-populations) may require methods that can jointly infer the dynamics of multiple populations. This is of particular importance for harvested species, for which management must balance utilization of productive populations with protection of weak ones. 2. Here we present a novel method for simultaneous learning about the spatio-temporal dynamics of multiple populations that combines genetic data with prior information about abundance and movement, akin to an integrated population modelling approach. We apply the Bayesian genetic mixed stock analysis to 17 wild and 10 hatchery-reared Baltic salmon (S. salar) stocks, quantifying uncertainty in stock composition in time and space, and in population dynamics parameters such as migration timing and speed. 3. The genetic data were informative about stock-specific movement patterns, updating priors for migration path, timing and speed. Use of a population dynamics model allowed robust interpolation of expected catch composition at areas and times with no genetic observations. Our results indicate that the commonly used "equal prior probabilities" assumption may not be appropriate for all mixed stock analyses: incorporation of prior information about stock abundance and movement resulted in more plausible and precise estimates of mixture compositions in time and space. 4. The model we present here forms the basis for optimizing the spatial and temporal allocation of harvest to support the management of mixed populations of migratory species.Peer reviewe

    Intermediate filament cytoskeleton of the liver in health and disease

    Get PDF
    Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising ~70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation

    An Interdisciplinary Assessment of Winter Flounder( Pseudopleuronectes americanus

    No full text

    Adaptive genetic variation underlies biocomplexity of Atlantic Cod in the Gulf of Maine and on Georges Bank.

    No full text
    Atlantic cod (Gadus morhua) populations in the Gulf of Maine (GoM) are at a fraction of their historical abundance, creating economic hardships for fishermen and putting at risk the genetic diversity of the remaining populations. An understanding of the biocomplexity among GoM populations will allow for adaptive genetic diversity to be conserved to maximize the evolutionary potential and resilience of the fishery in a rapidly changing environment. We used restriction-site-associated DNA sequencing (RADseq) to characterize the population structure and adaptive genetic diversity of five spawning aggregations from the western GoM and Georges Bank. We also analyzed cod caught in the eastern GoM, an under-sampled area where spawning aggregations have been extirpated. Using 3,128 single nucleotide polymorphisms (SNPs), we confirmed the existence of three genetically separable spawning groups: (1) winter spawning cod from the western GoM, (2) spring spawning cod, also from the western GoM, and (3) Georges Bank cod. Non-spawning cod from the eastern GoM could not be decisively linked to either of the three spawning groups and may represent a unique component of the resource, a mixed sample, or cod from other unsampled source populations. The genetic differentiation among the three major spawning groups was primarily driven by loci putatively under selection, particularly loci in regions known to contain genomic inversions on linkage groups (LG) 7 and 12. These LGs have been found to be linked to thermal regime in cod across the Atlantic, and so it is possible that variation in timing of spawning in western GoM cod has resulted in temperature-driven adaptive divergence. This complex population structure and adaptive genetic differentiation could be crucial to ensuring the long-term productivity and resilience of the cod fishery, and so it should be considered in future management plans
    corecore