44 research outputs found

    Generation of an inducible and optimized piggyBac transposon system.

    Get PDF
    Genomic studies in the mouse have been slowed by the lack of transposon-mediated mutagenesis. However, since the resurrection of Sleeping Beauty (SB), the possibility of performing forward genetics in mice has been reinforced. Recently, piggyBac (PB), a functional transposon from insects, was also described to work in mammals. As the activity of PB is higher than that of SB11 and SB12, two hyperactive SB transposases, we have characterized and improved the PB system in mouse ES cells. We have generated a mouse codon-optimized version of the PB transposase coding sequence (CDS) which provides transposition levels greater than the original. We have also found that the promoter sequence predicted in the 5'-terminal repeat of the PB transposon is active in the mammalian context. Finally, we have engineered inducible versions of the optimized piggyBac transposase fused with ERT2. One of them, when induced, provides higher levels of transposition than the native piggyBac CDS, whereas in the absence of induction its activity is indistinguishable from background. We expect that these tools, adaptable to perform mouse-germline mutagenesis, will facilitate the identification of genes involved in pathological and physiological processes, such as cancer or ES cell differentiation

    Disentangling PTEN-cooperating tumor suppressor gene networks in cancer.

    Get PDF
    We have recently performed a whole-body, genome-wide screen in mice using a single-copy inactivating transposon for the identification of Pten (phosphatase and tensin homolog)-cooperating tumor suppressor genes (TSGs). We identified known and putative TSGs in multiple cancer types and validated the functional and clinical relevance of several promising candidates for human prostate cancer

    Age-Adjusted Endothelial Activation and Stress Index for Coronavirus Disease 2019 at Admission Is a Reliable Predictor for 28-Day Mortality in Hospitalized Patients With Coronavirus Disease 2019

    Get PDF
    Background: Endothelial Activation and Stress Index (EASIX) predict death in patients undergoing allogeneic hematopoietic stem cell transplantation who develop endothelial complications. Because coronavirus disease 2019 (COVID-19) patients also have coagulopathy and endotheliitis, we aimed to assess whether EASIX predicts death within 28 days in hospitalized COVID-19 patients. Methods: We performed a retrospective study on COVID-19 patients from two different cohorts [derivation (n = 1,200 patients) and validation (n = 1,830 patients)]. The endpoint was death within 28 days. The main factors were EASIX [(lactate dehydrogenase * creatinine)/thrombocytes] and aEASIX-COVID (EASIX * age), which were log2-transformed for analysis. Results: Log2-EASIX and log2-aEASIX-COVID were independently associated with an increased risk of death in both cohorts (p 7) of 47.6% (95% CI = 44.2-50.9%). The cutoff of log2 aEASIX-COVID = 6 showed a positive predictive value of 31.7% and negative predictive value of 94.7%, and log2 aEASIX-COVID = 7 showed a positive predictive value of 47.6% and negative predictive value of 89.8%. Conclusion: Both EASIX and aEASIX-COVID were associated with death within 28 days in hospitalized COVID-19 patients. However, aEASIX-COVID had significantly better predictive performance than EASIX, particularly for discarding death. Thus, aEASIX-COVID could be a reliable predictor of death that could help to manage COVID-19 patients.This study was supported by grants from Instituto de Salud Carlos III [grant number COV20/1144 [MPY224/20) to AF-R/MÁJ-S]. MÁJ-S and AF-R are supported by Instituto de Salud Carlos III (grant numbers CP17CIII/00007 and CP14CIII/00010, respectively).S

    Nuclear envelope defects cause stem cell dysfunction in premature-aging mice

    Get PDF
    Nuclear lamina alterations occur in physiological aging and in premature aging syndromes. Because aging is also associated with abnormal stem cell homeostasis, we hypothesize that nuclear envelope alterations could have an important impact on stem cell compartments. To evaluate this hypothesis, we examined the number and functional competence of stem cells in Zmpste24-null progeroid mice, which exhibit nuclear lamina defects. We show that Zmpste24 deficiency causes an alteration in the number and proliferative capacity of epidermal stem cells. These changes are associated with an aberrant nuclear architecture of bulge cells and an increase in apoptosis of their supporting cells in the hair bulb region. These alterations are rescued in Zmpste24−/−Lmna+/− mutant mice, which do not manifest progeroid symptoms. We also report that molecular signaling pathways implicated in the regulation of stem cell behavior, such as Wnt and microphthalmia transcription factor, are altered in Zmpste24−/− mice. These findings establish a link between age-related nuclear envelope defects and stem cell dysfunction

    A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention.

    Get PDF
    We show that BRAF(V600E) initiates an alternative pathway to colorectal cancer (CRC), which progresses through a hyperplasia/adenoma/carcinoma sequence. This pathway underlies significant subsets of CRCs with distinctive pathomorphologic/genetic/epidemiologic/clinical characteristics. Genetic and functional analyses in mice revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. We further demonstrate dose-dependent effects of oncogenic signaling, with physiologic Braf(V600E) expression being sufficient for hyperplasia induction, but later stage intensified Mapk-signaling driving both tumor progression and activation of intrinsic tumor suppression. Such phenomena explain, for example, the inability of p53 to restrain tumor initiation as well as its importance in invasiveness control, and the late stage specificity of its somatic mutation. Finally, systematic drug screening revealed sensitivity of this CRC subtype to targeted therapeutics, including Mek or combinatorial PI3K/Braf inhibition

    PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice.

    Get PDF
    B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology

    Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.

    Get PDF
    The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUTlevels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUTin driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, TgfÎČ-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.The work was supported by the German Cancer Consortium Joint Funding Program, the Helmholtz Gemeinschaft (PCCC Consortium), the German Research Foundation (SFB1243; A13/A14) and the European Research Council (ERC CoG number 648521)

    Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans.

    No full text
    Post-translational processing of proteins such as the Ras GTPases, which contain a C-terminal CaaX motif (where C stands for cysteine, a for aliphatic and X is one of several amino acids), includes prenylation, proteolytic removal of the C-terminal tripeptide and carboxy-methylation of the isoprenyl-cysteine residue. In the present study, we report the presence of two distinct CaaX-proteolytic activities in membrane extracts from Caenorhabditis elegans, which are sensitive to EDTA and Tos-Phe-CH(2)Cl (tosylphenylalanylchloromethane; 'TPCK') respectively. A protein similar to the mammalian and yeast farnesylated-proteins converting enzyme-1 (FACE-1)/Ste24p CaaX metalloprotease, encoded by a hypothetical gene (CeFACE-1/C04F12.10) found in C. elegans chromosome I, probably accounts for the EDTA-sensitive activity. An orthologue of FACE-2/Rce1p, the enzyme responsible for the proteolytic maturation of Ras oncoproteins and other prenylated substrates, probably accounts for the Tos-Phe-CH(2)Cl-sensitive activity, even though the gene for FACE-2/Rce1 has not been previously identified in this model organism. We have identified a previously overlooked gene in C. elegans chromosome V, which codes for a 266-amino-acid protein (CeFACE-2) with 30% sequence identity to human FACE-2/Rce1. We show that both CeFACE-1 and CeFACE-2 have the ability to promote production of the farnesylated yeast pheromone a -factor in vivo and to cleave a farnesylated peptide in vitro. These results indicate that CeFACE-1 and CeFACE-2 are bona fide CaaX proteases and support the evolutionary conservation of this proteolytic system in eukaryotes
    corecore