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ABSTRACT

We have recently performed a whole-body, genome-wide screen in mice using a single-copy inactivating
transposon for the identification of Pten (phosphatase and tensin homolog)-cooperating tumor suppressor
genes (TSGs). We identified known and putative TSGs in multiple cancer types and validated the
functional and clinical relevance of several promising candidates for human prostate cancer.

Cancer originates and evolves through the gradual accumulation
of genetic/epigenetic alterations in oncogenes and tumor sup-
pressor genes (TSGs). The PTEN (phosphatase and tensin
homolog) gene is the second most frequently mutated/deleted
TSG in human cancer, only after TP53 (tumor protein p53). As
the main antagonist of the phosphatidylinositol 3-kinase
(PI3K)-AKT serine/threonine kinase 1 (AKT) oncogenic path-
way and a key maintainer of genomic stability, PTEN controls a
plethora of cellular processes including metabolism, cell growth,
proliferation, and survival.! Although subtle changes in PTEN
levels can lead to tumor initiation, lower levels of this protein
are linked to more advanced disease, and accompanying muta-
tions in other genes are required for full malignancy.” Identify-
ing these PTEN-cooperating TSG networks is a major goal for
the understanding of the molecular mechanisms involved in
cancer progression and the design of combinatorial therapies to
treat PTEN-deficient cancers.’

Insertional mutagenesis screens complement human
genome sequencing-based approaches for elucidating the
genetic forces driving cancer progression.*> By coupling
Pten-disruption to mobilization of a Sleeping Beauty inactivat-
ing transposon within each cell, we have recently performed a
novel genome-wide survey for Pten-cooperating TSGs in mice.®
The transposon, targeted to the Pten locus, carries a critical
exon of this gene when it is mobilized, leading to Pten inactiva-
tion and subsequent generation of an additional mutation
when randomly reinserted into the genome (Fig. 1). Moreover,
increased transposon mutation rate was achieved in a subset of
mice by introducing a transgene with additional copies of an
inactivating transposon. Based on this innovation, we have
identified sets of hundreds of known and novel cancer genes
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involved in prostate, breast, and skin cancer, all of them pre-
dicted to behave as TSGs.® We then focused on prostate cancer,
for which PTEN relevance is well documented, and validated
the implication of several of the genes identified for the pro-
gression of the disease in humans.’

Prostate cancer is the most common malignancy in men and
the second leading cause of male cancer deaths in the Western
world.” Nearly 50% of primary and almost 100% of metastatic
prostate tumors have genetic alterations in the PI3K-AKT sig-
naling pathway, mostly through loss of PTEN.® However, while
some of these tumors progress slowly, others rapidly spread
beyond the site of origin and metastasize, implying that genetic
alterations beyond this pathway may account for such different
behaviors.” Finding genetic markers able to distinguish indo-
lent from aggressive disease represents one of the current
unmet challenges.

Transposon integration analysis on 127 prostate tumors led
us to the identification of over a hundred genes potentially
associated to cancer progression. Cross-comparison with
human cancer data sets supported the relevance of these genes
for PTEN-cooperating human prostate tumor suppression as
they are significantly enriched in (1) known and putative
human cancer genes, (2) genes whose mRNA expression levels
decline concomitantly with those of PTEN in human prostate
cancer samples, and (3) genes frequently inactivated by homo-
zygous deletion in human prostate cancer.” Among them, those
encoding chromatin/histone modifiers and involved in RNA
metabolic processes (RNA stability, splicing, and transcrip-
tional regulation) are strongly overrepresented, followed by
those implicated in ubiquitin-mediated proteolysis (mainly E3
ligases). Interestingly, some of these genes have been described
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Figure 1. Transposon-based screen for identifying Pten-cooperating tumor suppressors in cancer. Mice carry a Pten allele where the exon 5 (encoding the phosphatase
domain) is flanked by the terminal repeats (TRs) of the Sleeping Beauty transposon (top left). This allele functions normally, but it becomes inactivated upon mobilization
of the transposon, which subsequently can be reinserted elsewhere in the genome, potentially generating an additional loss-of-function mutation (top middle). Loss-of-
heterozygosity (LOH) can lead to inactivation of the second Pten allele and/or of the additional, Pten-cooperating, mutations (top right). Sequencing and mapping of
transposon insertion sites allow identification of targeted genes. Final cancer gene lists are generated with those loci hit by transposition significantly more often than
predicted by chance across several tumors. Genes of interest can then be selected for further functional and clinical validation (bottom). TSG, tumor suppressor gene; wt,
wild-type; ht, heterozygous; ko, knockout; Pten, phosphatase and tensin homolog; ZBTB20, zinc finger and BTB domain-containing 20; CELF2, CUGBP, Elav-like family mem-
ber 2; AKAP13, A-kinase anchor protein 13; PARD3, Par-3 family cell polarity regulator; WAC, WW domain-containing adaptor with coiled coil.

previously to be altered in human prostate cancer through dif-
ferent mechanisms, including mutation (ARIDIA, KDMG6A,
MLLI, MLL5, and MAGI3), copy-number variation (ETV6 and
FOXPI), gene fusion (TBLIXRI, FUBPI, and EPB4I), tran-
scriptional dysregulation (MEISI and PBX1I), or single nucleo-
tide polymorphism (RASAI).>® This shows the potential of
transposon mutagenesis screens to identify a diversity of cancer
genes that otherwise require multiple methodological
approaches to be pinpointed. Moreover, for several of these
genes, our results represent the first piece of biologic evidence
for their tumor suppressive role in prostate cancer.®

We selected 5 of these genes, ranking among the top 20 most
frequently hit by transposition, for further validation. These
genes encode the transcription factor ZBTB20 (zinc finger and
BTB domain-containing 20), the RNA-binding factor CELF2
(CUGBP, Elav-like family member 2), the controller of cell
polarity PARD3 (Par-3 family cell polarity regulator), the scaf-
fold protein AKAP13 (A-kinase anchor protein 13), and the
autophagy regulator WAC (WW domain-containing adaptor
with coiled coil). We showed that co-silencing the expression
of PTEN and each of these five genes increased the invasive
potential of two immortalized but nontransformed human



prostate cell lines.® Moreover, the analysis of their transcrip-
tomic profiling upon co-silencing conditions revealed rewiring
of known oncogenic pathways important for prostate cancer
progression.® Additionally, we found that each one of these
genes is co-downregulated with PTEN in primary and meta-
static samples, and that patients with tumors expressing low
levels of them have worse prognoses, with shorter times to
recurrence.® Finally, the generation of mice with prostate-spe-
cific heterozygous or homozygous deletion of Wac in aPten-
deficient background demonstrated that the function of Wac in
cancer is gene-dose-dependent, as its partial inactivation pro-
motes cancer, but its complete loss constrains tumor growth.®
Although downstream analyses are needed to clarify this phe-
nomenon of obligate haploinsufficiency, Wac-mediated regula-
tory mechanisms of autophagy might be the underlying cause,
as autophagy has been shown to exert opposite roles in cancer,
depending on the tissue context and its intensity.'’ Altogether,
the genes identified through this screen could not only be used
as markers for prognosis and staging purposes, but they may
also inspire new anticancer therapies.

Globally, the new mouse model developed in our study
provides a very useful tool to disentangle the crosstalk
mechanisms between PTEN, a key signaling node in cancer,
and previously unknown TSG networks. Thus, cross-com-
paring the catalog of genes compiled in this screen with
previous lists of genes generated through next-generation
sequencing of human cancer genomes helps pinpoint the
actual drivers of cancer progression, which can be then pur-
sued for downstream analysis.
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