296 research outputs found

    Quantum radiation from superluminal refractive index perturbations

    Full text link
    We analyze in detail photon production induced by a superluminal refractive index perturbation in realistic experimental operating conditions. The interaction between the refractive index perturbation and the quantum vacuum fluctuations of the electromagnetic field leads to the production of photon pairs.Comment: 4 page

    Analogue Gravity and ultrashort laser pulse filamentation

    Full text link
    Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a moving refractive index perturbation which modifies the space-time geometry as seen by co-propagating light rays. We study the analogue geometry induced by the filament and show that one of the most evident features of filamentation, namely conical emission, may be precisely reconstructed from the geodesics. We highlight the existence of favorable conditions for the study of analogue black hole kinematics and Hawking type radiation.Comment: 4 pages, revised versio

    Spacetime geometries and light trapping in travelling refractive index perturbations

    Full text link
    In the framework of transformation optics, we show that the propagation of a locally superluminal refractive index perturbation (RIP) in a Kerr medium can be described, in the eikonal approximation, by means of a stationary metric, which we prove to be of Gordon type. Under suitable hypotheses on the RIP, we obtain a stationary but not static metric, which is characterized by an ergosphere and by a peculiar behaviour of the geodesics, which are studied numerically, also accounting for material dispersion. Finally, the equation to be satisfied by an event horizon is also displayed and briefly discussed.Comment: 14 pages, 7 figure

    The Asymptotic Dynamics of two-dimensional (anti-)de Sitter Gravity

    Get PDF
    We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherland quantum mechanical model.Comment: 16 pages, LaTeX, no figures, uses JHEP.cls. v2: Some references and comments added. v3: Minor errors correcte

    Reply to Comment on: Hawking radiation from ultrashort laser pulse filaments

    Full text link
    A comment by R. Schutzhold et al. raises possible concerns and questions regarding recent measurements of analogue Hawking radiation. We briefly reply to the opinions expressed in the comment and sustain that the origin of the radiation may be understood in terms of Hawking emission

    Cosmological solutions from fake N=2 EYM supergravity

    Get PDF
    We characterise the (fake) supersymmetric solutions of Wick-rotated N=2 d=4 gauged supergravity coupled to non-Abelian vector multiplets. In the time-like case we obtain generalisations of Kastor & Traschen's cosmological black holes: they have a specific time-dependence and the base-space must be 3-dimensional hyperCR/Gauduchon-Tod space. In the null-case, we find that the metric has a holonomy contained in Sim(2), give a general characterisation of the solutions, and give some examples. Finally, we point out that in some cases the solutions we found are non-BPS solutions to N=2 d=4 supergravity coupled to vector multiplets.Comment: 30 pages. Comments and references added, typos correcte

    Quantum Effects for the Dirac Field in Reissner-Nordstrom-AdS Black Hole Background

    Full text link
    The behavior of a charged massive Dirac field on a Reissner-Nordstrom-AdS black hole background is investigated. The essential self-adjointness of the Dirac Hamiltonian is studied. Then, an analysis of the discharge problem is carried out in analogy with the standard Reissner-Nordstrom black hole case.Comment: 18 pages, 5 figures, Iop styl

    Noncommutative Gravity in two Dimensions

    Get PDF
    We deform two-dimensional topological gravity by making use of its gauge theory formulation. The obtained noncommutative gravity model is shown to be invariant under a class of transformations that reduce to standard diffeomorphisms once the noncommutativity parameter is set to zero. Some solutions of the deformed model, like fuzzy AdS_2, are obtained. Furthermore, the transformation properties of the model under the Seiberg-Witten map are studied.Comment: 20 pages, LaTeX, references and some comments adde

    Emission of correlated photon pairs from superluminal perturbations in dispersive media

    Full text link
    We develop a perturbative theory that describes a superluminal refractive perturbation propagating in a dispersive medium and the subsequent excitation of the quantum vacuum zero-point fluctuations. We find a process similar to the anomalous Doppler effect: photons are emitted in correlated pairs and mainly within a Cerenkov-like cone, one on the forward and the other in backward directions. The number of photon pairs emitted from the perturbation increases strongly with the degree of superluminality and under realizable experimental conditions, it can reach up to ~0.01 photons per pulse. Moreover, it is in principle possible to engineer the host medium so as to modify the effective group refractive index. In the presence of "fast light" media, e.g. a with group index smaller than unity, a further ~10x enhancement may be achieved and the photon emission spectrum is characterized by two sharp peaks that, in future experiments would clearly identify the correlated emission of photon pairs.Comment: 9 pages, 7 figure

    Supersymmetric gyratons in five dimensions

    Get PDF
    We obtain the gravitational and electromagnetic field of a spinning radiation beam-pulse (a gyraton) in minimal five-dimensional gauged supergravity and show under which conditions the solution preserves part of the supersymmetry. The configurations represent generalizations of Lobatchevski waves on AdS with nonzero angular momentum, and possess a Siklos-Virasoro reparametrization invariance. We compute the holographic stress-energy tensor of the solutions and show that it transforms without anomaly under these reparametrizations. Furthermore, we present supersymmetric gyratons both in gauged and ungauged five-dimensional supergravity coupled to an arbitrary number of vector supermultiplets, which include gyratons on domain walls.Comment: 25 pages, no figures, uses JHEP3.cls. Final version to appear in CQ
    corecore