315 research outputs found

    Robotic Technologies for Surveying Habitats and Seeking Evidence of Life: Results from the 2004 Field Experiments of the "Life in the Atacama" Project

    Get PDF
    The Chilean Atacama Desert is the most arid region on Earth and in several ways analogous to Mars. Evidence suggests that the interior of the Atacama is lifeless, yet where the desert meets the Pacific coastal range dessication-tolerant microorganisms are known to exist. The gradient of biodiversity and habitats in the Atacama's subregions remain unexplored and are the focus of the Life in the Atacama project. Our field investigation attempts to bring further scientific understanding of the Atacama as a habitat for life through the creation of robotic astrobiology. This involves capabilities for autonomously traversing hundreds of kilometers while deploying sensors to survey the varying geologic and biologic properties of the environment, Fig. 1. Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge about life in extreme environments that can be applied to future planetary missions. Through these experiments we also hope to develop and practice the methods by which a rover might best be employed to survey desert terrain in search of the habitats in which life can survive, or may have in the past

    Relation of gallbladder function and Helicobacter pylori infection to gastric mucosa inflammation in patients with symptomatic cholecystolithiasis

    Get PDF
    Background. Inflammatory alterations of the gastric mucosa are commonly caused by Helicobacter pylori (Hp) infection in patients with symptomatic gallstone disease. However, the additional pathogenetic role of an impaired gallbladder function leading to an increased alkaline duodenogastric reflux is controversially discussed. Aim:To investigate the relation of gallbladder function and Hp infection to gastric mucosa inflammation in patients with symptomatic gallstones prior to cholecystectomy. Patients: Seventy-three patients with symptomatic gallstones were studied by endoscopy and Hp testing. Methods: Gastritis classification was performed according to the updated Sydney System and gallbladder function was determined by total lipid concentration of gallbladder bile collected during mainly laparoscopic cholecystectomy. Results: Fifteen patients revealed no, 39 patients mild, and 19 moderate to marked gastritis. No significant differences for bile salts, phospholipids, cholesterol, or total lipids in gallbladder bile were found between these three groups of patients. However, while only 1 out of 54 (< 2%) patients with mild or no gastritis was found histologically positive for Hp, this infection could be detected in 14 (74%) out of 19 patients with moderate to marked gastritis. Conclusion: Moderate to marked gastric mucosa inflammation in gallstone patients is mainly caused by Hp infection, whereas gallbladder function is not related to the degree of gastritis. Thus, an increased alkaline duodenogastric reflux in gallstone patients seems to be of limited pathophysiological relevance. Copyright (c) 2006 S. Karger AG, Basel

    Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam

    Get PDF
    The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g māˆ’3 hourāˆ’1 and at an empty bed residence time (EBRT) of 12.5 s. Under an IL of āˆ¼130 g māˆ’3 hourāˆ’1, BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106 Ā± 7 and 68 Ā± 8 g māˆ’3 hourāˆ’1, respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation intervals from 1 min every 12 min to 1 min every 2 hours in BTF2. Average values of EC were 111 Ā± 25 and 90 Ā± 7 g māˆ’3 hourāˆ’1 for BTF1 and BTF2, respectively, when working at an IL of āˆ¼195 g māˆ’3 hourāˆ’1. Microbial analysis revealed a significant shift in the microbial community of BTF1 inoculated with Pseudomonas sp. BOE200. At the end of the experiment, the species Microbacterium sp., Chryseobacterium sp., Acinetobacter sp., Pseudomonas sp. and Mycobacterium sp. were detected. In BTF2 inoculated with activated sludge, the denaturing gradient gel electrophoresis (DGGE) technique showed a diverse microbial community including species that was able to use 2-butoxyethanol as its carbon source, such as Pseudomonas aeruginosa and Pseudomonas putida as representative species. Although BTF1 inoculated with Pseudomonas sp. BOE200 and higher gas velocity (probably greater gas/liquid mass transfer rate) showed a slight improvement in performance, the use of activated sludge as inoculum seems to be a more feasible option for the industrial application of this technology

    Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses

    Get PDF
    Gusev Crater was selected as the landing site for the Mars Exploration Rover (MER) Spirit mission. Located at the outlet of Ma'adim Vallis and 250 km south of the volcano Apollinaris Patera, Gusev is an outstanding site to achieve the goals of the MER mission. The crater could have collected sediments from a variety of sources during its 3.9 Ga history, including fluvial, lacustrine, volcanic, glacial, impact, regional and local aeolian, and global air falls. It is a unique site to investigate the past history of water on Mars, climate and geological changes, and the potential habitability of the planet, which are central science objectives of the MER mission. Because of its complex history and potential diversity, Gusev will allow the testing of a large spectrum of hypotheses with the complete suite of MER instruments. Evidence consistent with long-lived lake episodes exist in the landing ellipse area. They might offer a unique opportunity to study, for the first time, Martian aqueous sediments and minerals formed in situ in their geological context. We review the geological history and diversity of the landing site, the science hypotheses that can be tested during the MER mission, and the relevance of Gusev to the MER mission objectives and payload

    Subsurface Microbial Habitats in an Extreme Desert Mars-Analog Environment

    Get PDF
    Sediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm. We deployed an autonomous rover in a mission-relevant Martian drilling scenario with manual sample validation. Subsurface communities were delineated by depth related to sediment moisture. Geochemical analysis indicated soluble salts and minerology that influenced water bio-availability, particularly in deeper sediments. Colonization was also patchy and uncolonized sediment was associated with indicators of extreme osmotic challenge. The study identifies linkage between biocomplexity, moisture and geochemistry in Mars-like sediments at the limit of habitability and demonstrates feasibility of the rover-mounted drill for future Mars sample recovery

    Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills

    Get PDF
    Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics
    • ā€¦
    corecore