5 research outputs found

    Coopération entre les isoformes TAp73 et la signalisation TGF-β dans la régulation de l'expression de la NO Synthase inductible

    No full text
    Nitric oxide (NO) is a gaseous molecule synthesized from L-arginine by Nitric Oxide Synthases. NO acts as a potent signaling molecule in various physiological processes like vasorelaxation and neurotransmission. It modulates the activity of many proteins (e.g. soluble guanylate cyclase and ribonucleotide reductase) through nitrosylation of thiol moieties or transition metal ions. As a free radical, NO can also react with a number of cellular species, notably molecular oxygen, to form reactive oxygen species and reactive nitrogen species. Thanks to these properties, NO appears as a major component of innate immune response and inflammation. Phagocytes produce large amounts of NO in response to proinflammatory through inducible Nitric Oxide Synthase (iNOS) activity. Because of the harmful effects of NO derivatives on cellular components, iNOS activity needs to be tightly regulated. The p53 tumor suppressor has been shown to repress Nos2 after being activated by NO itself. The p73 protein is an homologous encoded by the TP73 gene that generate transcriptionally active TAp73 isoforms and ΔNp73 isoforms that lack the transactivation domain and exert a dominant negative effect. This study focuses on the role of TAp73 isoforms in regulation of iNOS expression. We demonstrate that TAp73 isoforms potentiate the repressive effect of TGF-β on iNOS expression at transcriptional and post-traductional levels, resulting in a substantial iNOS overexpression in TAp73-/- cells. These results emphasize the emerging role of p53 family as a master regulator of TGF-β functions.Le monoxyde d’azote (NO) est une molécule gazeuse synthétisée par les NO Synthases à partir de L-arginine. NO est une puissante molécule de signalisation dans de nombreux processus physiologiques comme la vasodilatation et la neurotransmission. Il module l’activité de multiples protéines (ex : guanylate cyclase soluble et ribonucléotide réductase) grâce à la nitrosylation de groupements thiol ou de métaux de transition. En tant que radical libre, NO peut réagir avec de nombreuses espèces comme l’oxygène moléculaire, et ainsi former des dérivés réactifs. Grâce à ces propriétés, NO est un acteur majeur de l’immunité innée et de l’inflammation. Les phagocytes produisent de grandes quantités de NO en réponse à des stimuli proinflammatoires, via l’activité NO Synthase inductible (iNOS). En raison des effets délétères des dérivés de NO, l’activité iNOS doit être finement régulée. Le suppresseur de tumeur p53 est capable de réprimer l’expression du gène Nos2 après avoir été lui-même activé en réponse à une accumulation de NO. La protéine p73 est un homologue de p53 encodé par un gène qui génère à la fois des isoformes actives (TAp73) et des isoformes qui sont dépourvues du domaine de transactivation N-terminal et exercent un effet dominant négatif (ΔNp73). Cette étude se focalise sur le rôle des isoformes TAp73 dans la régulation de l’expression de la iNOS. Nous démontrons que les isoformes TAp73 régulent négativement l’expression de la iNOS aux niveaux transcriptionnel et post-traductionnel en potentialisant l’effet répresseur du TGF-β, ce qui résulte en une forte surexpression de la iNOS dans les cellules TAp73-/-. Ces résultats confortent le rôle de la famille p53 comme un réseau essentiel de protéines régulatrices des fonctions du TGF-β

    TAp73 Isoforms and TGF-β Signaling Cooperate to Suppress Inducible Nitric Oxide Synthase Expression

    No full text
    Le monoxyde d’azote (NO) est une molécule gazeuse synthétisée par les NO Synthases à partir de L-arginine. NO est une puissante molécule de signalisation dans de nombreux processus physiologiques comme la vasodilatation et la neurotransmission. Il module l’activité de multiples protéines (ex : guanylate cyclase soluble et ribonucléotide réductase) grâce à la nitrosylation de groupements thiol ou de métaux de transition. En tant que radical libre, NO peut réagir avec de nombreuses espèces comme l’oxygène moléculaire, et ainsi former des dérivés réactifs. Grâce à ces propriétés, NO est un acteur majeur de l’immunité innée et de l’inflammation. Les phagocytes produisent de grandes quantités de NO en réponse à des stimuli proinflammatoires, via l’activité NO Synthase inductible (iNOS). En raison des effets délétères des dérivés de NO, l’activité iNOS doit être finement régulée. Le suppresseur de tumeur p53 est capable de réprimer l’expression du gène Nos2 après avoir été lui-même activé en réponse à une accumulation de NO. La protéine p73 est un homologue de p53 encodé par un gène qui génère à la fois des isoformes actives (TAp73) et des isoformes qui sont dépourvues du domaine de transactivation N-terminal et exercent un effet dominant négatif (ΔNp73). Cette étude se focalise sur le rôle des isoformes TAp73 dans la régulation de l’expression de la iNOS. Nous démontrons que les isoformes TAp73 régulent négativement l’expression de la iNOS aux niveaux transcriptionnel et post-traductionnel en potentialisant l’effet répresseur du TGF-β, ce qui résulte en une forte surexpression de la iNOS dans les cellules TAp73-/-. Ces résultats confortent le rôle de la famille p53 comme un réseau essentiel de protéines régulatrices des fonctions du TGF-β.Nitric oxide (NO) is a gaseous molecule synthesized from L-arginine by Nitric Oxide Synthases. NO acts as a potent signaling molecule in various physiological processes like vasorelaxation and neurotransmission. It modulates the activity of many proteins (e.g. soluble guanylate cyclase and ribonucleotide reductase) through nitrosylation of thiol moieties or transition metal ions. As a free radical, NO can also react with a number of cellular species, notably molecular oxygen, to form reactive oxygen species and reactive nitrogen species. Thanks to these properties, NO appears as a major component of innate immune response and inflammation. Phagocytes produce large amounts of NO in response to proinflammatory through inducible Nitric Oxide Synthase (iNOS) activity. Because of the harmful effects of NO derivatives on cellular components, iNOS activity needs to be tightly regulated. The p53 tumor suppressor has been shown to repress Nos2 after being activated by NO itself. The p73 protein is an homologous encoded by the TP73 gene that generate transcriptionally active TAp73 isoforms and ΔNp73 isoforms that lack the transactivation domain and exert a dominant negative effect. This study focuses on the role of TAp73 isoforms in regulation of iNOS expression. We demonstrate that TAp73 isoforms potentiate the repressive effect of TGF-β on iNOS expression at transcriptional and post-traductional levels, resulting in a substantial iNOS overexpression in TAp73-/- cells. These results emphasize the emerging role of p53 family as a master regulator of TGF-β functions

    Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription

    No full text
    International audienceInducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation

    Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis

    No full text
    Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication. The p53R2 protein is expressed throughout the cell cycle and in quiescent cells where it provides dNTPs for mitochondrial DNA synthesis. Participation of R2 and p53R2 in DNA repair has also been suggested. In this study, we investigated the fate of the RnR subunits during apoptosis. The p53R2 protein was cleaved in a caspase-dependent manner in K-562 cells treated with inhibitors of the Bcr-Abl oncogenic kinase and in HeLa 229 cells incubated with TNF-α and cycloheximide. The cleavage site was mapped between Asp(342) and Asn(343). Caspase attack released a C-terminal p53R2 peptide of nine residues containing the conserved heptapeptide essential for R1 binding. As a consequence, the cleaved p53R2 protein was inactive. In vitro, purified caspase-3 and -8 could release the C-terminal tail of p53R2. Knocking down these caspases, but not caspase-2, -7, and -10, also inhibited p53R2 cleavage in cells committed to die via the extrinsic death receptor pathway. The R2 subunit was subjected to caspase- and proteasome-dependent proteolysis, which was prevented by siRNA targeting caspase-8. Knocking down caspase-3 was ineffective. Protein R1 was not subjected to degradation. Adding deoxyribonucleosides to restore dNTP pools transiently protected cells from apoptosis. These data identify RnR activity as a prosurvival function inactivated by proteolysis during apoptosis

    Light-induced formation of NO in endothelial cells by photoactivatable NADPH analogues targeting nitric-oxide synthase

    No full text
    International audienceBackground: Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells.Methods: The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively.Results: We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects.Conclusions: We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells.General significance: Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes
    corecore