1,220 research outputs found
Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci.
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact
Enzymatic degradation ofRNAcauses widespread protein aggregation in cell and tissue lysates
Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA‐binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single‐stranded pyrimidine‐rich bulges or loops surrounded by double‐stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one‐to‐one protein‐nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble
Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated.
High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy
miR-21 Promotes Fibrogenesis in Peritoneal Dialysis.
Peritoneal dialysis (PD) is a life-saving form of renal replacement therapy for those with end-stage kidney disease. Mesothelial cells (MCs) line the peritoneal cavity and help define peritoneal response to treatment-associated injury, a major reason for treatment failure. miRNAs are important regulators, but their roles in peritoneal fibrosis are largely unknown. In this study, miR-21 was one of the most abundant miRNAs in primary MCs, and was up-regulated by the profibrotic cytokine transforming growth factor-β1 and in PD effluent-derived MCs exhibiting mesenchymal phenotypic change. Increased miR-21 was found in peritoneal membrane biopsy specimens from PD patients compared to healthy controls (PD biocompatible, 5.86×, P = 0.0001; PD conventional, 7.09×, P < 0.0001, n = 11 per group). In PD effluent from a cohort of 230 patients, miR-21 was higher in those receiving the therapy long-term compared to new starters (n = 230, miR-21 3.26×, P = 0.001) and associated with icodextrin use (R = 0.52; 95% CI, 0.20-0.84), peritonitis count (R = 0.16; 95% CI, 0.03-0.29), and dialysate cytokines. miR-21 down-regulated programmed cell death 4 and programmed cell death 4 protein was decreased in peritoneal membrane biopsy specimens from PD patients compared to healthy controls. New miR-21 targets were identified that may be important during PD fibrogenesis. These data identify miR-21 as an important effector of fibrosis in the peritoneal membrane, and a promising biomarker in the dialysis effluent for membrane change in patients receiving PD
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Characterization of the commercially-available fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a marker for chloroquine resistance and uptake in a 96-well plate assay
Chloroquine was a cheap, extremely effective drug against Plasmodium falciparum until resistance arose. One approach to reversing resistance is the inhibition of chloroquine efflux from its site of action, the parasite digestive vacuole. Chloroquine accumulation studies have traditionally relied on radiolabelled chloroquine, which poses several challenges. There is a need for development of a safe and biologically relevant substitute. We report here a commercially-available green fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a proxy for chloroquine accumulation. This compound localized to the digestive vacuole of the parasite as observed under confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively than in the resistant strains 7G8 and K1. Microplate reader measurements indicated suppression of LynxTag-CQGREEN efflux after pretreatment of parasites with known reversal agents. Microsomes carrying either sensitive or resistant-type PfCRT were assayed for uptake; resistant-type PfCRT exhibited increased accumulation of LynxTag-CQGREEN, which was suppressed by pretreatment with known chemosensitizers. Eight laboratory strains and twelve clinical isolates were sequenced for PfCRT and Pgh1 haplotypes previously reported to contribute to drug resistance, and pfmdr1 copy number and chloroquine IC50s were determined. These data were compared with LynxTag-CQGREEN uptake/fluorescence by multiple linear regression to identify genetic correlates of uptake. Uptake of the compound correlated with the logIC50 of chloroquine and, more weakly, a mutation in Pgh1, F1226Y
Genome-Wide Association Study of Blood Pressure Traits by Hispanic/Latino Background: the Hispanic Community Health Study/Study of Latinos
Hypertension prevalence varies between ethnic groups, possibly due to differences in genetic, environmental, and cultural determinants. Hispanic/Latino Americans are a diverse and understudied population. We performed a genome-wide association study (GWAS) of blood pressure (BP) traits in 12,278 participants from the Hispanics Community Health Study/Study of Latinos (HCHS/SOL). In the discovery phase we identified eight previously unreported BP loci. In the replication stage, we tested these loci in the 1982 Pelotas Birth Cohort Study of admixed Southern Brazilians, the COGENT-BP study of African descent, women of European descent from the Women Health Initiative (WHI), and a sample of European descent from the UK Biobank. No loci met the Bonferroni-adjusted level of statistical significance (0.0024). Two loci had marginal evidence of replication: rs78701042 (NGF) with diastolic BP (P = 0.008 in the 1982 Pelotas Birth Cohort Study), and rs7315692 (SLC5A8) with systolic BP (P = 0.007 in European ancestry replication). We investigated whether previously reported loci associated with BP in studies of European, African, and Asian ancestry generalize to Hispanics/Latinos. Overall, 26% of the known associations in studies of individuals of European and Chinese ancestries generalized, while only a single association previously discovered in a people of African descent generalized
First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ
- …