17,565 research outputs found
Energy weighted sum rules for mesons in hot and dense matter
We study energy weighted sum rules of the pion and kaon propagator in nuclear
matter at finite temperature. The sum rules are obtained from matching the
Dyson form of the meson propagator with its spectral Lehmann representation at
low and high energies. We calculate the sum rules for specific models of the
kaon and pion self-energy. The in-medium spectral densities of the K and anti-K
mesons are obtained from a chiral unitary approach in coupled channels which
incorporates the S- and P-waves of the kaon-nucleon interaction. The pion
self-energy is determined from the P-wave coupling to particle-hole and
Delta-hole excitations, modified by short range correlations. The sum rules for
the lower energy weights are fulfilled satisfactorily and reflect the
contributions from the different quasi-particle and collective modes of the
meson spectral function. We discuss the sensitivity of the sum rules to the
distribution of spectral strength and their usefulness as quality tests of
model calculations.Comment: 19 pages, 6 figures; one figure added, enhanced discussion, version
to appear in PR
Andreev tunneling through a double quantum-dot system coupled to a ferromagnet and a superconductor: effects of mean field electronic correlations
We study the transport properties of a hybrid nanostructure composed of a
ferromagnet, two quantum dots, and a superconductor connected in series. By
using the non-equilibrium Green's function approach, we have calculated the
electric current, the differential conductance and the transmittance for
energies within the superconductor gap. In this regime, the mechanism of charge
transmission is the Andreev reflection, which allows for a control of the
current through the ferromagnet polarization. We have also included interdot
and intradot interactions, and have analyzed their influence through a mean
field approximation. In the presence of interactions, Coulomb blockade tend to
localized the electrons at the double-dot system, leading to an asymmetric
pattern for the density of states at the dots, and thus reducing the
transmission probability through the device. In particular, for non-zero
polarization, the intradot interaction splits the spin degeneracy, reducing the
maximum value of the current due to different spin-up and spin-down densities
of states. Negative differential conductance (NDC) appears for some regions of
the voltage bias, as a result of the interplay of the Andreev scattering with
electronic correlations. By applying a gate voltage at the dots, one can tune
the effect, changing the voltage region where this novel phenomenon appears.
This mechanism to control the current may be of importance in technological
applications.Comment: 12 pages, 11 figure
Neogene-Quaternary onshore record in the lower Ebro river incised palaeovalley (Ebro margin, Catalan Coastal Range, NE Iberia)
The lower Ebro is a bedrock-alluvial mixed incised valley with a persistent degradational stacking architecture developed from latest Serravallian(?) to Holocene. This degradational pattern was probably controlled by isostatic rebound in NE Iberia and punctuated by major relative sea level changes that temporally accentuated or attenuated the palaeovalley entrenchment and sediment retention. Six allostratigraphic units in the palaeovalley constitute the onshore record of its evolution and the opening and connection of the Ebro Basin with the Mediterranean. This paper deals with the analysis and reinterpretation of these units in order to precise the sequence of events that took place on the onshore part of the Catalan continental margin during the Ebro River drainage entrenchment. Plausible chronology and palaeogeographic evolution of the Neogene-Quaternary drainage incision in the lower Ebro are also proposed. The early evolutionary stages of the incised palaeovalley (Latest Serravallian?-Tortonian-Early Messinian, from 11.63–9? to near 5.6Ma) were dominated by entrenchment and intense sediment transfer from the onshore to the offshore zones (erosion surface S2). These processes were only punctuated by the sedimentation of the alluvial palaeovalley unit M2 (late Messinian). The polygenetic onshore erosion surfaces S2 and S3 are linked here with the onshore erosive processes that fed the sedimentation of the terrigenous shelf-slope system of the offshore Castellón group and considered coeval with the offshore Messinian erosion surfaces (reflectors M and m). During a further evolutionary stage (Pliocene to Early Pleistocene from 5.3 to approximately 2Ma) the Early Pliocene major Mediterranean reflooding caused some sediment retention in the incised palaeovalley (sedimentation of unit P) but sediment transfer into the offshore remained very effective. In the last evolutionary stage (Early Pleistocene-Holocene, from 2Ma to present) the palaeovalley became again mainly degradational (generation of erosion surfaces S4 to S6 and sedimentation of stepped alluvial terraces Q1-2 to Q4). The onshore stratigraphic record, including the allostratigraphic units P and Q1-2 to Q4 and the related bounding surfaces S3 to S6, is correlated with the sedimentation of the terrigenous shelf-slope system of the offshore Ebro group
Domain-wall profile in the presence of anisotropic exchange interactions: Effective on-site anisotropy
Starting from a D-dimensional XXZ ferromagnetic Heisenberg model in an
hypercubic lattice, it is demonstrated that the anisotropy in the exchange
coupling constant leads to a D-dependent effective on-site anisotropy
interaction often ignored for D>1. As a result the effective width of the wall
depends on the dimensionality of the system. It is shown that the effective
one-dimensional Hamiltonian is not the one-dimensional XXZ version as assumed
in previous theoretical work. We derive a new expression for the wall profile
that generalizes the standard Landau-Lifshitz form. Our results are found to be
in very good agreement with earlier numerical work using the Monte Carlo
method. Preceding theories concerning the domain wall contribution to
magnetoresistance have considered the role of D only through the modification
of the density of states in the electronic band structure. This Brief Report
reveals that the wall profile itself contains an additional D dependence for
the case of anisotropic exchange interactions.Comment: 4 pages; new title and abstract; 1 figure comparing our results with
earlier numerical work; a more general model containing the usual on-site
anisotropy; new remarks and references on the following two topics: (a)
experimental evidence for the existence of spin exchange anisotropy, and (b)
preceding theories concerning the domain wall contribution to
magnetoresistance; to appear in Phys. Rev.
- …