20,488 research outputs found
Strange and charm mesons at FAIR
We study the properties of strange and charm mesons in hot and dense matter
within a self-consistent coupled-channel approach for the experimental
conditions of density and temperature expected for the CBM experiment at
FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli
blocking effects, mean-field binding of all the baryons involved, and meson
self-energies. We analyze the behaviour in this hot and dense environment of
dynamically-generated baryonic resonances together with the evolution with
density and temperature of the strange and open-charm meson spectral functions.
We test the spectral functions for strange mesons using energy-weighted sum
rules and finally discuss the implications of the properties of charm mesons on
the D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 12 pages, 9 figures, invited talk at XXXI Mazurian Lakes Conference
on Physics: Nuclear Physics and the Road to FAIR, August 30-September 6,
2009, Piaski, Polan
A novel route to Pt-Bi2O3 composite thin films and their application in photo-reduction of water
A novel homoleptic bismuth(III) β-diketonate (dibenzoylmethane – dbm) complex [Bi(dbm)3]2 has been used as a precursor to thin films of crystalline β-Bi2O3, and hexachloroplatinic acid (H2PtCl6·6H2O) has been demonstrated as a suitable precursor for deposition of platinum nanoparticles, both deposited via aerosol-assisted chemical vapour deposition (AACVD). Thin films of Pt–Bi2O3 were co-deposited from a mixture of [Bi(dbm)3]2 and H2PtCl6·6H2O; the introduction of Pt particles into β-Bi2O3 causes hydrogen to be evolved during photolysis of water over the composite material, a property not found for Pt particles or β-Bi2O3 alone
A spatially-structured PCG method for content diversity in a Physics-based simulation game
This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of di ferent levels of di ficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n-
body problem, a classical problem in the fi eld of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the di ficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e:, intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of
maps with di ferent di ficulty in Gravityvolve!.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems
We study quantum systems with even numbers N of levels that are completely
state-controlled by unitary transformations generated by Lie algebras
isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than
the respective su(N) with dimension N^2-1. We show that this reduction
constrains the Hamiltonian to have symmetric energy levels. An example of such
a system is an n-qubit system. Using a geometric representation for the quantum
wave function of a finite system, we present an explicit example that shows a
two-qubit system can be controlled by the elements of the Lie algebra sp(4)
(isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with
dimension fifteen. These results enable one to envision more efficient
algorithms for the design of fields for quantum-state engineering, and they
provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure
Splitting hairs of the three charge black hole
We construct the large radius limit of the metric of three charge supertubes
and three charge BPS black rings by using the fact that supertubes preserve the
same supersymmetries as their component branes. Our solutions reproduce a few
of the properties of three charge supertubes found recently using the Born
Infeld description. Moreover, we find that these solutions pass a number of
rather nontrivial tests which they should pass if they are to describe some of
the hair of three charge black holes and three charge black rings.Comment: 15 pages, LaTeX, v2 minor correction
Evershed clouds as precursors of moving magnetic features around sunspots
The relation between the Evershed flow and moving magnetic features (MMFs) is
studied using high-cadence, simultaneous spectropolarimetric measurements of a
sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler
velocities, magnetograms, and total linear polarization maps are calculated
from the observed Stokes profiles. We follow the temporal evolution of two
Evershed clouds that move radially outward along the same penumbral filament.
Eventually, the clouds cross the visible border of the spot and enter the moat
region, where they become MMFs. The flux patch farther from the sunspot has the
same polarity of the spot, while the MMF closer to it has opposite polarity and
exhibits abnormal circular polarization profiles. Our results provide strong
evidence that at least some MMFs are the continuation of the penumbral Evershed
flow into the moat. This, in turn, suggests that MMFs are magnetically
connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu
- …
