16,218 research outputs found
A spatially-structured PCG method for content diversity in a Physics-based simulation game
This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of di ferent levels of di ficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n-
body problem, a classical problem in the fi eld of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the di ficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e:, intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of
maps with di ferent di ficulty in Gravityvolve!.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
The Cloud Contribution to the Width in Nuclear Matter
The width of the meson in cold nuclear matter is computed in a
hadronic many-body approach, focusing on a detailed treatment of the medium
modifications of intermediate states. The and
propagators are dressed by their selfenergies in nuclear matter taken from
previously constrained many-body calculations. The pion selfenergy includes
and excitations with short-range correlations, while the
selfenergy incorporates the same dressing of its cloud with a full
3-momentum dependence and vertex corrections, as well as direct resonance-hole
excitations; both contributions were quantitatively fit to total
photo-absorption spectra and scattering. Our calculations
account for in-medium decays of type , and 2-body absorptions . This causes
deviations of the in-medium width from a linear behavior in density,
with important contributions from spacelike propagators. The
width from the cloud may reach up to 200 MeV at normal nuclear matter
density, with a moderate 3-momentum dependence. This largely resolves the
discrepancy of linear - approximations with the values deduced from
nuclear photoproduction measurements.Comment: 7 pages, 4 eps figures; v2: includes 3-mom dependence of width and
additional discussio
Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore YbTiO in Magnetic Field
The frustrated pyrochlore magnet YbTiO has the remarkable
property that it orders magnetically, but has no propagating magnons over wide
regions of the Brillouin zone. Here we use inelastic neutron scattering to
follow how the spectrum evolves in cubic-axis magnetic fields. At high fields
we observe in addition to dispersive magnons also a two-magnon continuum, which
grows in intensity upon reducing the field and overlaps with the one-magnon
states at intermediate fields leading to strong renormalization of the
dispersion relations, and magnon decays. Using heat capacity measurements we
find that the low and high field regions are smoothly connected with no sharp
phase transition, with the spin gap increasing monotonically in field. Through
fits to an extensive data set we re-evaluate the spin Hamiltonian finding
dominant quantum exchange terms, which we propose are responsible for the
anomalously strong fluctuations and quasiparticle breakdown effects observed at
low fields.Comment: 5 pages main text + 19 pages supplemental materia
Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNbO in a transverse field: Geometric frustration and quantum renormalization effects
The quasi-one-dimensional (1D) Ising ferromagnet CoNbO has recently
been driven via applied transverse magnetic fields through a continuous quantum
phase transition from spontaneous magnetic order to a quantum paramagnet, and
dramatic changes were observed in the spin dynamics, characteristic of weakly
perturbed 1D Ising quantum criticality. We report here extensive single-crystal
inelastic neutron scattering measurements of the magnetic excitations
throughout the three-dimensional (3D) Brillouin zone in the quantum
paramagnetic phase just above the critical field to characterize the effects of
the finite interchain couplings. In this phase, we observe that excitations
have a sharp, resolution-limited line shape at low energies and over most of
the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the
full bandwidth along the strongly dispersive chain direction and resolve clear
modulations of the dispersions in the plane normal to the chains,
characteristic of frustrated interchain couplings in an antiferromagnetic
isosceles triangular lattice. The dispersions can be well parametrized using a
linear spin-wave model that includes interchain couplings and further neighbor
exchanges. The observed dispersion bandwidth along the chain direction is
smaller than that predicted by a linear spin-wave model using exchange values
determined at zero field, and this effect is attributed to quantum
renormalization of the dispersion beyond the spin-wave approximation in fields
slightly above the critical field, where quantum fluctuations are still
significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and
figure
Strange and charm mesons at FAIR
We study the properties of strange and charm mesons in hot and dense matter
within a self-consistent coupled-channel approach for the experimental
conditions of density and temperature expected for the CBM experiment at
FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli
blocking effects, mean-field binding of all the baryons involved, and meson
self-energies. We analyze the behaviour in this hot and dense environment of
dynamically-generated baryonic resonances together with the evolution with
density and temperature of the strange and open-charm meson spectral functions.
We test the spectral functions for strange mesons using energy-weighted sum
rules and finally discuss the implications of the properties of charm mesons on
the D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 12 pages, 9 figures, invited talk at XXXI Mazurian Lakes Conference
on Physics: Nuclear Physics and the Road to FAIR, August 30-September 6,
2009, Piaski, Polan
Evershed clouds as precursors of moving magnetic features around sunspots
The relation between the Evershed flow and moving magnetic features (MMFs) is
studied using high-cadence, simultaneous spectropolarimetric measurements of a
sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler
velocities, magnetograms, and total linear polarization maps are calculated
from the observed Stokes profiles. We follow the temporal evolution of two
Evershed clouds that move radially outward along the same penumbral filament.
Eventually, the clouds cross the visible border of the spot and enter the moat
region, where they become MMFs. The flux patch farther from the sunspot has the
same polarity of the spot, while the MMF closer to it has opposite polarity and
exhibits abnormal circular polarization profiles. Our results provide strong
evidence that at least some MMFs are the continuation of the penumbral Evershed
flow into the moat. This, in turn, suggests that MMFs are magnetically
connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu
A novel route to Pt-Bi2O3 composite thin films and their application in photo-reduction of water
A novel homoleptic bismuth(III) β-diketonate (dibenzoylmethane – dbm) complex [Bi(dbm)3]2 has been used as a precursor to thin films of crystalline β-Bi2O3, and hexachloroplatinic acid (H2PtCl6·6H2O) has been demonstrated as a suitable precursor for deposition of platinum nanoparticles, both deposited via aerosol-assisted chemical vapour deposition (AACVD). Thin films of Pt–Bi2O3 were co-deposited from a mixture of [Bi(dbm)3]2 and H2PtCl6·6H2O; the introduction of Pt particles into β-Bi2O3 causes hydrogen to be evolved during photolysis of water over the composite material, a property not found for Pt particles or β-Bi2O3 alone
Rotating Superconductors and the London Moment: Thermodynamics versus Microscopics
Comparing various microscopic theories of rotating superconductors to the
conclusions of thermodynamic considerations, we traced their marked difference
to the question of how some thermodynamic quantities (the electrostatic and
chemical potentials) are related to more microscopic ones: The electron's the
work function, mean-field potential and Fermi energy -- certainly a question of
general import.
After the correct identification is established, the relativistic correction
for the London Moment is shown to vanish, with the obvious contribution from
the Fermi velocity being compensated by other contributions such as
electrostatics and interactions.Comment: 23 pages 4 fi
- …