876 research outputs found
Rotary solenoid shutter drive assembly and rotary inertia damper and stop plate assembly
A camera shutter assembly composed of a pair of superposed opaque planar shutter blades, each having an aperture and being arranged for reciprocal linear movement is disclosed. A pair of rotary solenoids, each connected to one of the blades by a linkage and arranged to be actuated separately at a predetermined interval is provided. An inertia damper and stop plate is built into each solenoid to prevent rebound
Symmetrical, bi-electrode supported solid oxide fuel cell
The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape
A Symmetrical, Planar SOFC Design for NASA's High Specific Power Density Requirements
Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW/kg) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650-800 C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 C and lower. Higher temperatures, 900-1000 C, are more favorable for SOFC stacks to achieve specific power densities of 1.0 kW/kg. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO3-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10-20 microns electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50 -100 microns. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling
Method for Making a Fuel Cell from a Solid Oxide Monolithic Framework
The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer. The opposing major outer exposed surfaces of each cell unit is given a thin coating of electrically conductive ceramic, and multiple cell units are stacked, or built up by stacking of individual cell layers, to create an unsintered fuel cell stack. Ceramic or glass edge seals are installed to create flow channels for fuel and air. The cell stack with edge sealants is then sintered into a ceramic monolithic framework. Said solution and thermal treatments means convert the electrode scaffolds into anodes and cathodes. The thin layers of electrically conductive ceramic become the interconnects in the assembled stack
Concept definition study for recovery of tumbling satellites. Volume 1: Executive summary, study results
The first assessment is made of the design requirements and conceptual definition of a front end kit to be transported on the currently defined Orbital Maneuvering Vehicle (OMV) and the Space Transportation System Shuttle Orbiter, to conduct remote, teleoperated recovery of disabled and noncontrollable, tumbling satellites. Previous studies did not quantify the dynamic characteristics of a tumbling satellite, nor did they appear to address the full spectrum of Tumbling Satellite Recovery systems requirements. Both of these aspects are investigated with useful results
Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report
A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites
Relative multiplexing for minimizing switching in linear-optical quantum computing
Many existing schemes for linear-optical quantum computing (LOQC) depend on
multiplexing (MUX), which uses dynamic routing to enable near-deterministic
gates and sources to be constructed using heralded, probabilistic primitives.
MUXing accounts for the overwhelming majority of active switching demands in
current LOQC architectures. In this manuscript, we introduce relative
multiplexing (RMUX), a general-purpose optimization which can dramatically
reduce the active switching requirements for MUX in LOQC, and thereby reduce
hardware complexity and energy consumption, as well as relaxing demands on
performance for various photonic components. We discuss the application of RMUX
to the generation of entangled states from probabilistic single-photon sources,
and argue that an order of magnitude improvement in the rate of generation of
Bell states can be achieved. In addition, we apply RMUX to the proposal for
percolation of a 3D cluster state in [PRL 115, 020502 (2015)], and we find that
RMUX allows a 2.4x increase in loss tolerance for this architecture.Comment: Published version, New Journal of Physics, Volume 19, June 201
Entangled two atoms through different couplings and the thermal noise
The entanglement of two atoms is studied when the two atoms are coupled to a
single-mode thermal field with different couplings. The different couplings of
two atoms are in favor of entanglement preparation: it not only makes the case
of absence entanglement with same coupling appear entanglement, but also
enhances the entanglement with the increasing of the relative difference of two
couplings. We also show that the diversity of coupling can improved the
critical temperature. If the optical cavity is leaky during the time evolution,
the dissipative thermal environment is benefit to produce the entanglement.Comment: 4 pages, 4 figure
Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization
Dynamics of Atom-Atom Correlations in the Fermi problem
We present a detailed perturbative study of the dynamics of several types of
atom-atom correlations in the famous Fermi problem. This is an archetypal model
to study micro-causality in the quantum domain where two atoms, the first
initially excited and the second prepared in its ground state, interact with
the vacuum electromagnetic field. The excitation can be transferred to the
second atom via a flying photon and various kinds of quantum correlations
between the two are generated during this process. Among these, prominent
examples are given by entanglement, quantum discord and nonlocal correlations.
It is the aim of this paper to analyze the role of the light cone in the
emergence of such correlations.Comment: 14 pages, 7 figure
- …