8 research outputs found

    A new approach for alkali incorporation in Cu2ZnSnS4 solar cells

    Get PDF
    The addition of alkali elements has become mandatory for boosting solar cell performance in chalcogenide thin films based on kesterites (Cu2ZnSnS4, CZTS). A novel doping process is presented here, that consists in the incorporation of sodium or lithium during the deposition of the CdS buffer layer, followed by a post-deposition annealing (PDA). As the doping route leads to more efficient devices in comparison with the undoped reference sample, the influence of PDA temperature was also investigated. Compositional profiling techniques, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and glow discharge optical mission spectroscopy (GDOES), revealed a dependence of the alkaline distribution in kesterites with the PDA temperature. Although the doping process is effective in that it increases the alkaline concentration compared to the undoped sample, the compositional profiles indicate that a significant proportion of Li and Na remains ‘trapped’ within the CdS layer. In the 200 °C-300 °C range the alkali profiles registered the higher concentration inside the kesterite. Despite this, an additional alkali accumulation close to the molybdenum/fluorine doped tin oxide substrate was found for all the samples, which is frequently related to alkali segregation at interfaces. The addition of both, lithium and sodium, improves the photovoltaic response compared to the undoped reference device. This is mainly explained by a substantial improvement in the open-circuit potential (V oc) of the cells, with best devices achieving efficiencies of 4.5% and 3% for lithium and sodium, respectively. Scanning-electron microscopy images depicted a ‘bilayer structure’ with larger grains at the top and small grains at the bottom in all samples. Moreover, the calculated bandgap energies of the CZTS films account for changes in the crystallographic order-disorder of the kesterites, more related to the PDA treatment rather than alkali incorporation. Even if further optimization of the absorber synthesis and doping process will be required, this investigation allowed the evaluation of a novel strategy for alkali incorporation in kesterite based solar cells.Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Hernandez, A.. Catalonia Institute For Energy Research Irec; EspañaFil: Sánchez, Y.. Catalonia Institute For Energy Research Irec; EspañaFil: Fonoll, R.. Catalonia Institute For Energy Research Irec; EspañaFil: Placidi, M.. Universidad Politécnica de Catalunya; España. Catalonia Institute For Energy Research Irec; EspañaFil: Izquierdo, V.. Catalonia Institute For Energy Research Irec; EspañaFil: Cabas Vidani, A.. Swiss Federal Laboratories for Materials Science and Technology; SuizaFil: Valentini, M.. Enea Centro Ricerche Casaccia; ItaliaFil: Mittiga, A.. Enea Centro Ricerche Casaccia; ItaliaFil: Pistor, P.. Universidad Pablo de Olavide; EspañaFil: Malerba, C.. Enea Centro Ricerche Casaccia; ItaliaFil: Saucedo, E.. Universidad Politécnica de Catalunya; Españ

    Analysis of the voltage losses in CZTSSe solar cells of varying Sn content

    Get PDF
    The performance of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) solar cells is hindered by low open circuit voltage (Voc). The commonly used metric for Voc-deficit, namely, the difference between the absorber band gap and qVoc, is not well-defined for compositionally complex absorbers like kesterite where the bandgap is hard to determine. Here, nonradiative voltage losses are analyzed by measuring the radiative limit of Voc, using external quantum efficiency (EQE) and electroluminescence (EL) spectra, without relying on precise knowledge of the bandgap. The method is applied to a series of Cu2ZnSn(S,Se)4 devices with Sn content variation from 27.6 to 32.9 at. % and a corresponding Voc range from 423 to 465 mV. Surprisingly, the lowest nonradiative loss, and hence the highest external luminescence efficiency (QELED), were obtained for the device with the lowest Voc. The trend is assigned to better interface quality between absorber and CdS buffer layer at lower Sn content

    A Knowledge-Based System to Support Emergency Medical Services for Disabled Patients

    No full text

    Influence of the Rear Interface on Composition and Photoluminescence Yield of CZTSSe Absorbers A Case for an Al2O3 Intermediate Layer

    Get PDF
    The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses amp; 916;Voc,nrad because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers IL , such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence amp; 916;Voc,nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures SLG, SLG Mo, SLG Al2O3, and SLG Mo Al2O3 with a Na doped kesterite absorber optimized for a device efficiency gt;10 . The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time of flight secondary ion mass spectrometry and energy dispersive X ray spectroscopy. The lowest amp; 916;Voc,nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high efficiency kesterite device

    High Efficiency LixCu1 x 2 ZnSn S,Se 4 Kesterite Solar Cells with Lithium Alloying

    No full text
    The performance-boosting effect of alkali treatments is well known for chalcogenide thin-film solar cells based on Cu(In,Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe–kesterite) absorbers. In contrast to heavier alkali elements, lithium is expected to alloy with the kesterite phase leading to the solid solution (LixCu1−x)2ZnSn(S,Se)4 (LCZTSSe), which offers a way of tuning the semiconductor bandgap by changing the ratio Li/(Li+Cu). Here is presented an experimental series of solution-processed LCZTSSe with lithium fraction Li/(Li+Cu) ranging from x = 0 to 0.12 in the selenized absorber as measured by means of inductively coupled plasma mass spectrometry. The proportional increase in lattice parameter a and bandgap from 1.05 to 1.18 eV confirms the lithium alloying in the kesterite phase. Increase in grain size is observed for x up to 0.07, whereas a higher lithium fraction leads to a porous absorber morphology due to an inhomogeneous distribution of Li-containing compounds in the kesterite layer. An increase of the photoluminescence quantum yield is observed as the Li fraction increases in the absorber layer. A champion device exhibits a remarkable efficiency of 11.6% (12.2% active area) for x = 0.06, close to the world record value of 12.6% demonstrating the effectiveness of lithium alloying.Additional funding projects: Spanish Ministry of Education, Culture, and Sport within the José Castillejo program (CAS 15/00070). MINECO within the Ramón y Cajal program (RYC-2011-08521)

    Influence of the Rear Interface on Composition and Photoluminescence Yield of CZTSSe Absorbers: A Case for an Al2O3 Intermediate Layer

    No full text
    The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (Delta V-oc,V-nrad) because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence Delta V-oc,V-nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures (SLG, SLG/Mo, SLG/Al2O3, and SLG/Mo/Al2O3) with a Na-doped kesterite absorber optimized for a device efficiency >10%. The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The lowest Delta V-oc,V-nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field-effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two-step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high-efficiency kesterite devices
    corecore