511 research outputs found

    X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4

    Full text link
    The angular dependence (x-ray linear dichroism) of the Cr K pre-edge in MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near edge structure spectroscopy (XANES) and compared to calculations based on density functional theory (DFT) and ligand field multiplet theory (LFM). We also present an efficient method, based on symmetry considerations, to compute the dichroism of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that the electric dipole transitions do not contribute to the features visible in the pre-edge and provides a clear vision of the assignment of the 1s-->3d transitions. However, DFT is unable to reproduce quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced by LFM calculations. The most relevant factors determining the dichroism of Cr K pre-edge are identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach is concluded that when the pre-edge features are more intense than 4 % of the edge jump, pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the substitutional site. This suggests the possibility to obtain quantitative information on site distortion from the x-ray linear dichroism by performing angular dependent measurements on single crystals

    Experimental evidence of thermal fluctuations on the X-ray absorption near-edge structure at the aluminum K-edge

    Full text link
    After a review of temperature-dependent experimental x-ray absorption near-edge structure (XANES) and related theoretical developments, we present the Al K-edge XANES spectra of corundum and beryl for temperature ranging from 300K to 930K. These experimental results provide a first evidence of the role of thermal fluctuation in XANES at the Al K-edge especially in the pre-edge region. The study is carried out by polarized XANES measurements of single crystals. For any orientation of the sample with respect to the x-ray beam, the pre-edge peak grows and shifts to lower energy with temperature. In addition temperature induces modifications in the position and intensities of the main XANES features. First-principles DFT calculations are performed for both compounds. They show that the pre-edge peak originates from forbidden 1s to 3s transitions induced by vibrations. Three existing theoretical models are used to take vibrations into account in the absorption cross section calculations: i) an average of the XANES spectra over the thermal displacements of the absorbing atom around its equilibrium position, ii) a method based on the crude Born-Oppenheimer approximation where only the initial state is averaged over thermal displacements, iii) a convolution of the spectra obtained for the atoms at the equilibrium positions with an approximate phonon spectral function. The theoretical spectra so obtained permit to qualitatively understand the origin of the spectral modifications induced by temperature. However the correct treatment of thermal fluctuation in XANES spectroscopy requires more sophisticated theoretical tools

    High-pressure study of X-ray diffuse scattering in ferroelectric perovskites

    Full text link
    We present a high-pressure x-ray diffuse scattering study of the ABO3_3 ferroelectric perovskites BaTiO_3 and KNbO_3. The well-known diffuse lines are observed in all the phases studied. In KNbO_3, we show that the lines are present up to 21.8 GPa, with constant width and a slightly decreasing intensity. At variance, the intensity of the diffuse lines observed in the cubic phase of BaTiO_3 linearly decreases to zero at ∌11\sim 11 GPa. These results are discussed with respect to x-ray absorption measurements, which leads to the conclusion that the diffuse lines are only observed when the B atom is off the center of the oxygen tetrahedron. The role of such disorder on the ferroelectric instability of perovskites is discussed.Comment: 4 pages, Accepted in PR

    Assessing temperature effects on multipole contributions and angular dependence in core-level spectroscopies

    Get PDF
    This study aims at assessing the thermal nuclei motion effects on the multipole transition channels involved in two core-level spectroscopies, x-ray absorption spectroscopy (XAS) and x-ray Raman scattering (XRS). Temperature effects on the 1s -> s monopole, 1s -> p dipole, and 1s -> d quadrupole transitions are investigated using two reference systems for which we present original experimental data: alpha-Al2O3 at the Al K edge probed by XRS at room temperature and rutile TiO2 at the Ti K pre-edge probed by XAS at temperatures ranging from 6 to 700 K. Through the latter, this work enlightens the part of the pre-edge peak enhancement due to temperature in the K pre-edge region of 3d transition metal, which is known to be routinely used to determine the concentration, valence or symmetry of the probed element in a given sample. Nuclear thermal fluctuations are taken into account using a method based on density functional theory that consists in averaging spectra over atomic configurations, generated within the harmonic approximation and obeying quantum statistics at finite temperature. Since only a finite number of such configurations are used, the numerically averaged spectra generally lose the symmetry of the equilibrium crystal positions. In this paper, we demonstrate that the physical average has to be symmetric and propose a method to restore the physical angular dependence of the spectra. The approach is successfully applied to investigate the angular dependent XAS spectra in rutile as a function of temperature. The two systems under study allow to draw general conclusions regarding the effect of nuclear quantum fluctuations on the different transition channels available to both core-level spectroscopies.Peer reviewe

    Study of the Galactic Interstellar Medium from High Resolution X-Ray Spectroscopy: X-Ray Absorption Fine Structure and Abundances of O, Mg, Si, S, and Fe

    Full text link
    We study the composition of the Galactic interstellar medium (ISM) toward the Galactic center region (5 < |l| < 20 degree) by utilizing X-ray absorption features of three bright low-mass X-ray binaries (LMXBs), GX 13+1, GX 5-1, and GX 340+0, observed with the Chandra HETGS. We detect X-ray absorption fine structure (XAFS) of the Si K-edge, characterized by a narrow and a broad absorption feature at 1846 and ~1865 eV, respectively. Comparison with ground experimental data indicates that most of the ISM Si exists in the form of silicates, although a composition of "pure" forsterite is ruled out. The XAFS spectra of the sulfur K-edge indicate that a significant fraction of S exists in the gas phase. From each source, we derive the column densities of Mg, S, Si, and Fe from the K-edge depth and that of O (or H) from the absorption of the continuum. The elemental abundance ratios are found to be consistent between the three targets: the mean values of O/Si, Mg/Si, S/Si, and Fe/Si are determined to be 0.55+-0.17, 1.14+-0.13, 1.03+-0.12, and 0.97+-0.31 solar, respectively (90% error in the mean value). We discuss the origins of the overabundances of the heavy metals relative to O in the Galactic ISM by comparison with the abundance pattern of the intracluster medium in clusters of galaxies. Assuming that most of the Mg and Si atoms are depleted into silicates of either the proxine or olivine family, we estimate that the number ratio of Mg to Fe in olivine is >~1.2 and that 17%-43% of the total O atoms in the ISM must be contained in silicate grains.Comment: 31 pages, 15 figures, accepted for publication in ApJ, vol. 620, 2005. Proof corrections are reflected (column densities of O and H were overestimated in the previous version.). Figures 1(a)-(c) are revise

    Influence of the 6^1S_0-6^3P_1 Resonance on Continuous Lyman-alpha Generation in Mercury

    Full text link
    Continuous coherent radiation in the vacuum-ultraviolet at 122 nm (Lyman-alpha) can be generated using sum-frequency mixing of three fundamental laser beams in mercury vapour. One of the fundamental beams is at 254 nm wavelength, which is close to the 6^1S_0-6^3P_1 resonance in mercury. Experiments have been performed to investigate the effect of this one-photon resonance on phasematching, absorption and the nonlinear yield. The efficiency of continuous Lyman-alpha generation has been improved by a factor of 4.5.Comment: 8 pages, 7 figure

    Risk-based inspection as a cost-effective strategy to reduce human exposure to cysticerci of Taenia saginata in low-prevalence settings

    Get PDF
    Taenia saginata cysticercus is the larval stage of the zoonotic parasite Taenia saginata, with a life-cycle involving both cattle and humans. The public health impact is considered low. The current surveillance system, based on post-mortem inspection of carcasses has low sensitivity and leads to considerable economic burden. Therefore, in the interests of public health and food production efficiency, this study aims to explore the potential of risk-based and cost-effective meat inspection activities for the detection and control of T. saginata cysticercus in low prevalence settings

    AEGIS at CERN: Measuring Antihydrogen Fall

    Full text link
    The main goal of the AEGIS experiment at the CERN Antiproton Decelerator is the test of fundamental laws such as the Weak Equivalence Principle (WEP) and CPT symmetry. In the first phase of AEGIS, a beam of antihydrogen will be formed whose fall in the gravitational field is measured in a Moire' deflectometer; this will constitute the first test of the WEP with antimatter.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz

    Full text link
    We present a reciprocal-space pseudopotential scheme for calculating X-ray absorption near-edge structure (XANES) spectra. The scheme incorporates a recursive method to compute absorption cross section as a continued fraction. The continued fraction formulation of absorption is advantageous in that it permits the treatment of core-hole interaction through large supercells (hundreds of atoms). The method is compared with recently developed Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES spectra were measured. Core-hole effects are investigated by varying the size of the supercell, thus leading to information similar to that obtained from cluster size analysis usually performed within multiple scattering calculations.Comment: 11 pages, 4 figure

    Quadrupole moment of the 6− isomeric state in 66Cu: Interplay between different nuclear deformation driving forces

    Get PDF
    AbstractWe have measured the spectroscopic quadrupole moment of the 6− isomeric state in 66Cu to be |Qs|=18.6(12) efm2. This state results from a weak coupling of the πp3/2 and the Îœg9/2 orbitals, which lead to sizable deformation at oblate and prolate shapes, correspondingly, in the 68Ni region. The interplay between these two different deformation-driving orbitals is observed at N=37 for the 6− state resulting in a most probable oblate shape
    • 

    corecore