17 research outputs found
Argo salinity: bias and uncertainty evaluation
Argo salinity is a key set of in situ ocean measurements for many scientific applications. However, use of the raw, unadjusted salinity data should be done with caution as they may contain bias from various instrument problems, most significant being from sensor calibration drift in the conductivity cells. For example, inclusion of biased but unadjusted Argo salinity has been shown to lead to spurious results in the global sea level estimates. Argo delayed-mode salinity data are data that have been evaluated and, if needed, adjusted for sensor drift. These delayed-mode data represent an improvement over the raw data because of the reduced bias, the detailed quality control flags, and the provision of uncertainty estimates. Such improvement may help researchers in scientific applications that are sensitive to salinity errors. Both the raw data and the delayed-mode data can be accessed via https://doi.org/10.17882/42182 (Argo, 2022). In this paper, we first describe the Argo delayed-mode process. The bias in the raw salinity data is then analyzed by using the adjustments that have been applied in delayed mode. There was an increase in salty bias in the raw Argo data beginning around 2015 and peaking during 2017â2018. This salty bias is expected to decrease in the coming years as the underlying manufacturer problem has likely been resolved. The best ways to use Argo data to ensure that the instrument bias is filtered out are then described. Finally, a validation of the Argo delayed-mode salinity dataset is carried out to quantify residual errors and regional variations in uncertainty. These results reinforce the need for continual re-evaluation of this global dataset.</p
Deep float experiment final evaluation and recommendations
This report will state the accuracy and stability of the sensors evaluated during the float experiment. Includes the analysis of the data gathered by the floats and the complementary data used to evaluate the sensor
Report of the outcome of the comparative study for the deep Argo quality control processing
Report of the most appropriate methods and tools in the quality control of deep Argo float
Report on the suitability of the actual reference data sets for deep Argo DMQC
This report provides an assessment of the availability and quality of the CTD reference data for Argo for the regions of deployments of the deep European Argo fleet
The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell
Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission
A pesquisa sobre jovens no Brasil: traçando novos desafios a partir de dados quantitativos
Resumo A partir de anĂĄlise da Pesquisa Nacional por Amostra Domiciliar (PNAD), abrangendo dois perĂodos (2004 e 2014), este artigo explora mudanças e permanĂȘncias na situação de jovens nos campos da educação, do trabalho e da vida familiar. Ao mesmo tempo, explicita como essas dimensĂ”es sĂŁo experimentadas de modo variado por moças e rapazes e segundo clivagens como idade, raça/cor e renda familiar. Ă considerando esse exercĂcio que se busca delinear, ainda que em carĂĄter preliminar e exploratĂłrio, novos desafios para a pesquisa sobre a condição juvenil e os jovens brasileiros. Faz parte dessa agenda a compreensĂŁo sobre como as mudanças socioeconĂŽmicas experimentadas na Ășltima dĂ©cada, bem como sua recente inflexĂŁo, declinam na experiĂȘncia da atual geração de jovens, seja em termos de um conjunto de novas expectativas, seja em desafios para satisfação de tais aspiraçÔes. Por outro lado, destaca-se a necessidade de uma perspectiva atenta Ă compreensĂŁo desses indivĂduos em suas trajetĂłrias, de seus modos de vida, dos desafios comuns que lhes sĂŁo propostos e do modo como sĂŁo por eles respondidos nesse momento do percurso de vida
ISOW Spreading and Mixing as Revealed by DeepâArgo Floats Launched in the CharlieâGibbs Fracture Zone
International audienceTo improve our understanding of deep circulation, we deployed five DeepâArgo floats (0â4,000 m) in the CharlieâGibbs Fracture Zone (CGFZ), which channels the flow of IcelandâScotland Overflow Water (ISOW), a dense water mass of the North Atlantic Ocean. The floats were programed to drift at 2,750 dbar in the ISOW layer. The floats mainly moved westward in the CGFZ, although some of them followed different routes for few cycles depending on northward intrusions of the North Atlantic Current over the CGFZ. One float revealed a direct route for ISOW from CGFZ to the Deep Western Boundary Current at Flemish Cap. In the CGFZ, oxygen data acquired by the floats revealed that the ISOW layer, characterized by salinity higher than 34.94 and density greater than 27.8 kg/m, was mainly composed of the highly oxygenated ISOW and the less oxygenated North East Atlantic Deep Water (NEADW), a complex water mass from the East Atlantic. In the ISOW layer, the relative contribution of ISOW was generally larger in the northern valley than in the southern valley of CGFZ. Northward intrusions of the North Atlantic Current above the CGFZ increased the relative contribution of NEADW in the northern valley and favors mixing between ISOW and NEADW. The ISOWâNEADW signal flowing westward from the CGFZ toward the Deep Western Boundary Current was progressively diluted by Labrador Sea Water and Denmark Strait Overflow Water. Oxygen measurements from DeepâArgo floats are essential for a better understanding and characterization of the mixing and spreading of deep water masses
Contributions of Wind Forcing and Surface Heating to Interannual Sea Level Variations in the Atlantic Ocean.
International audienceInterannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°â20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N
Perspectives on present-day sea level change: a tribute to Christian le Provost
Abstract In this paper, we first discuss the controversial result of the work by Cabanes et al. (Science 294:840-842, 2001), who suggested that the rate of past century sea level rise may have been overestimated, considering the limited and heterogeneous location of historical tide gauges and the high regional variability of thermal expansion which was supposed to dominate the observed sea level. If correct, this conclusion would have solved the problem raised by the IPCC third assessment report [Church et al. Cambridge University Press, Cambridge, pp 881, 2001], namely, the factor two difference between the 20th century observed sea level rise and the computed climatic contributions. However, recent investigations based on new ocean temperature data sets indicate that thermal expansion only explains part (about 0.4 mm/year) of the 1.8 mm/year observed sea level rise of the past few decades. In fact, the Cabanes et al.'s conclusion was incorrect due to a contamination of abnormally high ocean temperature data in the Gulf Stream area that led to an overestimate of thermal expansion in this region. In this paper, we also estimate thermal expansion over the last decade (1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003), using a new ocean temperature and salinity database. We compare our result with three other estimates, two being based on global gridded data sets, and one based on an approach similar to that developed here. It is found that the mean rate of thermosteric sea level rise over the past decade is 1.5±0.3 mm/year, i.e. 50% of the observed 3 mm/ year by satellite altimetry. For both time spans, past few decades and last decade, a contribution of 1.4 mm/year is not explained by thermal expansion, thus needs to be of water mass origin. Direct estimates of land ice melt for the recent years account for about 1 mm/year sea level rise. Thus, at least for the last decade, we have moved closer to explaining the observed rate of sea level rise than the IPCC third assessment report