6,643 research outputs found

    Cosmic ray energy changes at the termination shock and in the heliosheath

    Get PDF
    Voyager 1 crossed the termination shock of the solar wind in December 2004 at 94 AU and currently measures the cosmic ray intensity in the heliosheath. To better understand this modulation region beyond the shock, where adiabatic energy changes should be small, we review the net effect of energy changes during the modulation process, including adiabatic deceleration in the solar wind, acceleration at the termination shock, and the possibility that stochastic acceleration in the heliosheath may also make a contribution

    Cosmic-ray energy changes in the heliosphere. II. The effect on K-capture electron secondaries

    Get PDF
    Recent accurate measurements of the cosmic-ray intensity ratio ^(51)V/^(51)Cr below 1 GeV nucleon^(-1) provide a powerful new tool to study cosmic-ray modulation in the heliosphere. This paper describes how energy changes during this modulation process influence this ratio. In particular, our model includes acceleration at the solar wind termination shock, and we find that this mechanism significantly enhances the ^(51)V/^(51)Cr ratio at 1 AU. It is also shown that this acceleration makes the ratio more sensitive to the form of local low-energy interstellar spectra, below ~100 MeV nucleon^(-1), than without it. Specifically, this acceleration provides an independent confirmation of the consensus that low-energy spectra should be flatter than their high-energy power-law forms

    Depletion of chlorine into HCl ice in a protostellar core

    Get PDF
    The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10−5<10^{-5} has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2_{2} hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of <1e-10 in most of the protostellar core. We find the 35Cl/37Cl ratio in OMC-2 FIR 4 to be 3.2\pm0.1, consistent with the solar system value.Comment: 13 pages, 12 figures, accepted for publication in A&

    The effect of cosmic ray energy changes in the heliosphere on K-capture

    Get PDF
    In an accompanying paper we give a re-assessment of cosmic ray energy changes in the heliosphere to determine the effects of acceleration at the solar wind termination shock and modulation in the heliosheath beyond that. In this paper we show that these effects have important consequences for the interpretation of secondary to primary ratios of cosmic rays at energies below 1 GeV, i.e. in the region where they are strongly modulate

    Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray MeV Electrons and Protons Observed at Voyager 1 beyond 111 AU in the Heliosheath

    Get PDF
    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheath beginning at a distance of about 111 AU from the Sun. This conclusion is based on the fact that the low energy 6-14 MeV galactic electron intensity suddenly increased by ~20% over a time period \leg 10 days and the electron radial intensity gradient abruptly decreased from ~19%/AU to ~8%/AU at 2009.7 at a radial distance of 111.2 AU. A sudden radial gradient change was also observed at this time for >200 MeV protons. The gradients were constant during the time period before and after the electron increase. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase was observed, this time for both electrons and protons. The increase for electrons was ~25% and occurred over a time period ~15 days or less. For >200 MeV protons the increase at this time was ~5% (unusually large) and occurred over a longer time period ~50 days. Between about 2011.2 and 2011.6, radial intensity gradients ~18%/AU and 3%/AU were observed for electrons and protons, respectively. These gradients were very similar to those observed for these particles before the 1st sudden increase at 2009.7. These large positive gradients observed after 2011.2 indicate that V1, although it has entered a different propagation region, is still within the overall heliospheric modulating region at least up to a time ~2011.6 (118.0 AU). In this paper we will discuss these events in more detail and consider possibilities for their explanation that have recently been suggested.Comment: 13 pages, 2 figure

    Emerging Disease Burdens and the Poor in Cities of the Developing World

    Get PDF
    Patterns of future urban growth, combined with advances in the treatment of traditional scourges of communicable diseases, will cause a shift in the burden of disease toward category 2 (noncommunicable) and 3 (injury) conditions over the next 30 years. Communicable diseases, particularly HIV/AIDs, will continue to be the most important killers among the poor. However, new risks will emerge for several reasons. First, the marked sprawl of cities in the developing world will make access to care more difficult. Second, increasing motor vehicles and the likelihood of inadequate infrastructure will make air pollution and accidents in road traffic more common than in the past. Third, impoverished urban populations have already shown a propensity toward undernourishment, and its obverse, obesity, is already emerging as a major risk. Also, the large projected increase in slums suggests that violence and homicide will become a more important burden of health, and very large hazards will be created by fire-prone, insubstantial dwellings that will house nearly two billion people by 2030. In addition, decentralized governance will exacerbate the tensions and discontinuities that have plagued the management of health issues on the urban fringe over the past decade. Accordingly, public health agencies will need to adjust to the regional and country-specific factors to address the changing profile of risk. This analysis suggests that four factors – levels of poverty, speed of city growth, sprawl in cities, and degree of decentralization – will have importance in shaping health strategies. These factors vary in pace and intensity by region, suggesting that health care strategies for Category II and III conditions will need to be differentiated by region of the world. Also, interventions will have to rely increasingly on actors outside the ranks of public health specialists

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&
    • …
    corecore