11,034 research outputs found
Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation
The theoretical formalism of inclusive lepton-nucleus scattering in the
two-nucleon emission channel is discussed in the context of a simplified
approach, the modified convolution approximation. This allows one to write the
2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h
responses with the energies and momenta transferred to each nucleon. The idea
behind this method is to introduce different average momenta for the two
initial nucleons in the matrix elements of the two-body current, with the
innovation that they depend on the transferred energies and momenta. This
method treats exactly the two-body phase space kinematics, and reduces the
formulae of the response functions from seven-dimensional integrals over
momenta to much simpler three-dimensional ones. The applicability of the method
is checked by comparing with the full results within a model of electroweak
meson-exchange currents. The predictions are accurate enough, especially in the
low-energy threshold region where the average momentum approximation works the
best.Comment: 35 pages, 13 figure
Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents
We use a relativistic model of meson-exchange currents to compute the
proton-neutron and proton-proton yields in scattering from C in
the 2p-2h channel. We compute the response functions and cross section with the
relativistic Fermi gas model for a range of kinematics from intermediate to
high momentum transfers. We find a large contribution of neutron-proton
configurations in the initial state, as compared to proton-proton pairs. The
different emission probabilities of distinct species of nucleon pairs are
produced in our model only by meson-exchange currents, mainly by the
isobar current. We also analyze the effect of the exchange contribution and
show that the direct/exchange interference strongly affects the determination
of the np/pp ratio.Comment: 5 pages, 6 figure
The frozen nucleon approximation in two-particle two-hole response functions
We present a fast and efficient method to compute the inclusive two-particle
two-hole (2p-2h) electroweak responses in the neutrino and electron
quasielastic inclusive cross sections. The method is based on two
approximations. The first neglects the motion of the two initial nucleons below
the Fermi momentum, which are considered to be at rest. This approximation,
which is reasonable for high values of the momentum transfer, turns out also to
be quite good for moderate values of the momentum transfer . The
second approximation involves using in the "frozen" meson-exchange currents
(MEC) an effective -propagator averaged over the Fermi sea. Within the
resulting "frozen nucleon approximation", the inclusive 2p-2h responses are
accurately calculated with only a one-dimensional integral over the emission
angle of one of the final nucleons, thus drastically simplifying the
calculation and reducing the computational time. The latter makes this method
especially well-suited for implementation in Monte Carlo neutrino event
generators.Comment: 8 pages, 5 figures and 1 tabl
In-flight calibration of the INTEGRAL/IBIS mask
Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software
version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS
imaging procedure, leading to an improvement of the sensitivity around bright
sources up to a factor of 7. This module excludes in the deconvolution process
the IBIS/ISGRI detector pixels corresponding to the projection of a bright
source through mask elements affected by some defects. These defects are most
likely associated with screws and glue fixing the IBIS mask to its support.
Following these major improvements introduced in OSA 9, a second order
correction is still required to further remove the residual noise, now at a
level of 0.2-1% of the brightest source in the field of view. In order to
improve our knowledge of the IBIS mask transparency, a calibration campaign has
been carried out during 2010-2012. We present here the analysis of these data,
together with archival observations of the Crab and Cyg X-1, that allowed us to
build a composite image of the mask defects and to investigate the origin of
the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able
to point out a simple modification of the ISGRI analysis software that allows
to significantly improve the quality of the images in which bright sources are
detected at the edge of the field of view. Moreover, a refinement of the area
excluded by the ghost busters module is considered, and preliminary results
show improvements to be further tested. Finally, this study indicates further
directions to be investigated for improving the ISGRI sensitivity, such as
taking into account the thickness of the screws in the mask model or studying
the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of
the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October
15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds.
A. Goldwurm, F. Lebrun and C. Winkler,
(http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4
figures, see the PoS website for the full resolution versio
Neural correlates of phonological, orthographic and semantic reading processing in dyslexia
Developmental dyslexia is one of the most prevalent learning disabilities, thought to be associated with dysfunction in the neural systems underlying typical reading acquisition. Neuroimaging research has shown that readers with dyslexia exhibit regional hypoactivation in left hemisphere reading nodes, relative to control counterparts. This evidence, however, comes from studies that have focused only on isolated aspects of reading. The present study aims to characterize left hemisphere regional hypoactivation in readers with dyslexia for the main processes involved in successful reading: phonological, orthographic and semantic. Forty-one participants performed a demanding reading task during MRI scanning. Results showed that readers with dyslexia exhibited hypoactivation associated with phonological processing in parietal regions; with orthographic processing in parietal regions, Broca's area, ventral occipitotemporal cortex and thalamus; and with semantic processing in angular gyrus and hippocampus. Stronger functional connectivity was observed for readers with dyslexia than for control readers 1) between the thalamus and the inferior parietal cortex/ventral occipitotemporal cortex during pseudoword reading; and, 2) between the hippocampus and the pars opercularis during word reading. These findings constitute the strongest evidence to date for the interplay between regional hypoactivation and functional connectivity in the main processes supporting reading in dyslexia. Keywords: Dyslexia, Reading, Hypoactivation, Functional connectivity, Thalamus, Hippocampu
Nuclear dependence of the 2p2h electroweak response in the Relativistic Fermi Gas model
We present the results of a recent study of meson-exchange two-body currents
in lepton-nucleus inclusive scattering at various kinematics and for different
nuclei within the Relativistic Fermi Gas model. We show that the associated
nuclear response functions at their peaks scale as , for Fermi
momentum going from 200 to 300 MeV/c and momentum transfer from
to 2 GeV/c. This behavior is different from what is found for the
quasielastic response, which scales as . This result can be valuable in
the analyses of long-baseline neutrino oscillation experiments, which need to
implement these nuclear effects in Monte Carlo simulations for different
kinematics and nuclear targets.Comment: 11 pages, 6 figures, Proccedings of the Workshop "Advanced Aspects in
Nuclear Structure and Reactions at Different Energy Scales", 25-28 April
2017, Arbanasi, Bulgari
Exercise increases the dynamics of diurnal cortisol secretion and executive functionin people wiht MCI
Summary:
Regular physical activity is protective against and beneficial for Mild Cognitive Impairment (MCI), dementia, and Alzheimer´s disease. The mechanisms underlying these benefits remain unknown although it has been suggested that exercise-induced changes in the circadian pattern of cortisol secretion may be implicated. Fitness, salivary cortisol levels (0 and 30 mins post awakening, midday, 5pm and 9pm) and cognitive function were determined in a group of amnestic MCI patients (n=39) before and after a three-month exercise program (n=19) or usual care (n=20). At base fitness measures were positively correlated with peak levels of cortisol and a greater fall in cortisol concentration from peak levels to midday. The exercise intervention successfully increased fitness and resulted in a greater fall in cortisol concentration from peak to midday, compared to the control group. The exercise intervention enhanced indices of executive function, although memory, mood, and functionality were not affected
Neutrino-Oxygen CC0 scattering in the SuSAv2-MEC model
We present the predictions of the SuSAv2-MEC model for the double
differential charged-current muonic neutrino (antineutrino) cross section on
water for the T2K neutrino (antineutrino) beam. We validate our model by
comparing with the available inclusive electron scattering data on oxygen and
compare our predictions with the recent T2K -O data, finding
good agreement at all kinematics. We show that the results are very similar to
those obtained for C scattering, except at low energies, and we
comment on the origin of this difference. A factorized spectral function model
of O is also included for purposes of comparison.Comment: 28 pages, 10 figures, JLAB-THY-17-2586. Version 2 accepted for
publication in Journal of Physics G: Nucl. Part. Phy
Density dependence of 2p-2h meson-exchange currents
We analyze the density dependence of the contribution of meson-exchange
currents to the lepton-nucleus inclusive cross section in the two-particle
two-hole channel. The model is based on the Relativistic Fermi Gas, where each
nucleus is characterized by its Fermi momentum . We find that the 2p-2h
nuclear response functions at their peaks scale as for Fermi momentum
going from 200 to 300 MeV/c and momentum transfer from to 2 GeV/c.
This behavior is different from what is found for the quasielastic response,
which scales as . Additionally, the deep scaling region is also
discussed and there the usual scaling behavior is found to be preferable.Comment: 9 pages, 8 figure
- …
