114 research outputs found
Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart
The temporal nature of chromatin structural changes underpinning pathologic transcription are poorly understood. We measured chromatin accessibility and DNA methylation to study the contribution of chromatin remodeling at different stages of cardiac hypertrophy and failure. ATAC-seq and reduced representation bisulfite sequencing were performed in cardiac myocytes after transverse aortic constriction (TAC) or depletion of the chromatin structural protein CTCF. Early compensation to pressure overload showed changes in chromatin accessibility and DNA methylation preferentially localized to intergenic and intronic regions. Most methylation and accessibility changes observed in enhancers and promoters at the late phase (3 weeks after TAC) were established at an earlier time point (3 days after TAC), before heart failure manifests. Enhancers were paired with genes based on chromatin conformation capture data: while enhancer accessibility generally correlated with changes in gene expression, this feature, nor DNA methylation, was alone sufficient to predict transcription of all enhancer interacting genes. Enrichment of transcription factors and active histone marks at these regions suggests that enhancer activity coordinates with other epigenetic factors to determine gene transcription. In support of this hypothesis, ChIP-qPCR demonstrated increased enhancer and promoter occupancy of GATA4 and NKX2.5 at Itga9 and Nppa, respectively, concomitant with increased transcription of these genes in the diseased heart. Lastly, we demonstrate that accessibility and DNA methylation are imperfect predictors of chromatin structure at the scale of A/B compartmentalization—rather, accessibility, DNA methylation, transcription factors and other histone marks work within these domains to determine gene expression. These studies establish that chromatin reorganization during early compensation after pathologic stimuli is maintained into the later decompensatory phases of heart failure. The findings reveal the rules for how local chromatin features govern gene expression in the context of global genomic structure and identify chromatin remodeling events for therapeutic targeting in disease
Fine-structural distribution of MMP-2 and MMP-9 activities in the rat skeletal muscle upon training: a study by high-resolution in situ zymography
Matrix metalloproteinases (MMPs) are key regulators of extracellular matrix remodeling, but have also important intracellular targets. The purpose of this study was to examine the activity and subcellular localization of the gelatinases MMP-2 and MMP-9 in skeletal muscle of control and physically trained rats. In control hind limb muscle, the activity of the gelatinases was barely detectable. In contrast, after 5 days of intense exercise, in Soleus (Sol), but not Extensor digitorum longus (EDL) muscle, significant upregulation of gelatinolytic activity in myofibers was observed mainly in the nuclei, as assessed by high resolution in situ zymography. The nuclei of quiescent satellite cells did not contain the activity. Within the myonuclei, the gelatinolytic activity colocalized with an activated RNA Polymerase II. Also in Sol, but not in EDL, there were few foci of mononuclear cells with strongly positive cytoplasm, associated with apparent necrotic myofibers. These cells were identified as activated satellite cells/myoblasts. No extracellular gelatinase activity was observed. Gel zymography combined with subcellular fractionation revealed training-related upregulation of active MMP-2 in the nuclear fraction, and increase of active MMP-9 in the cytoplasmic fraction of Sol. Using RT-PCR, selective increase in MMP-9 mRNA was observed. We conclude that training activates nuclear MMP-2, and increases expression and activity of cytoplasmic MMP-9 in Sol, but not in EDL. Our results suggest that the gelatinases are involved in muscle adaptation to training, and that MMP-2 may play a novel role in myonuclear functions
Recommended from our members
A Scaleable and License Free 5G Internet of Radio Light Architecture for Services in Train Stations
In this paper we present a 5G Internet Radio-
Light (IoRL) architecture for underground train stations that
can be readily deployed because it utilizes unlicensed visible light
and millimeter wave part of the spectrum, which does not require
Mobile Network Operator (MNO) permission to deploy and
which is used to provide travelers with accurate location,
interaction, access to Internet and Cloud based Services, such as
high resolution video on a Tablet PC. The paper describes the
train station use cases and the IoRL architecture.European Commissio
A Scalable and License Free 5G Internet of Radio Light Architecture for Services in Homes & Businesses
In this paper we present a 5G Internet Radio-Light
(IoRL) architecture for homes that can be readily deployed
because it utilizes unlicensed visible light and millimeter wave
part of the spectrum, which does not require Mobile Network
Operator (MNO) permission to deploy and which is used to
provide inhabitants of houses with accurate location, interaction,
access to Internet and Cloud based services such as high
resolution video on a Tablet PC. The paper describes the home
use cases and the IoRL architecture.EU Horizon 202
Emergence and Spread of the SARS-CoV-2 Omicron Variant in Alberta Communities Revealed by Wastewater Monitoring
Wastewater monitoring of SARS-CoV-2 allows for early detection and monitoring of COVID-19 burden in communities and can track specific variants of concern. Targeted assays enabled relative proportions of SARS-CoV-2 Omicron and Delta variants to be determined across 30 municipalities covering >75% of the province of Alberta (pop. 4.5M) in Canada, from November 2021 to January 2022. Larger cities like Calgary and Edmonton exhibited a more rapid emergence of Omicron relative to smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a more remote northern city with a large fly-in worker population. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden prior to the observed increase in newly diagnosed clinical cases throughout Alberta, which peaked two weeks later. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of emerging pathogens including SARS-CoV-2 variants.Alberta Healt
Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important?
ABSTRACT In this review we discuss about the immobilization of enzymes in Langmuir-Blodgett films in order to determine the catalytic properties of these biomacromolecules when adsorbed on solid supports. Usually, the conformation of enzymes depends on the environmental conditions imposed to them, including the chemical composition of the matrix, and the morphology and thickness of the film. In this review, we show an outline of manuscripts that report the immobilization of enzymes as LB films since the 1980’s, and also some examples of how the surface properties of the floating monolayer prepared previously to the transfer to the solid support are important to determine the efficiency of the resulting device
Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments
- …