406 research outputs found

    Production cross-sections and momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV

    Full text link
    We have measured production cross sections and longitudinal momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV. The production cross-sections show excellent agreement with the predictions of the semiempirical formula EPAX. We have compared these results, involving extremly neutron deficient nuclei, with model calculations to extract informa tion about the response of these models close to the driplines. The longitudinal momentum distributions have also been extracted and are compared with the Goldhaber and Morrissey systematics.Comment: 16 pages, 6 figure

    The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development.

    Get PDF
    We hypothesise that intraerythrocytic malaria parasite metabolism is not merely fulfilling the need for ATP generation, but is evolved to support rapid proliferation, similar to that seen in other rapidly proliferating cells such as cancer cells. Deregulated glycolytic activity coupled with impaired mitochondrial metabolism is a metabolic strategy to generate glycolytic intermediates essential for rapid biomass generation for schizogony. Further, we discuss the possibility that Plasmodium metabolism is not only a functional consequence of the 'hard-wired' genome and argue that metabolism may also have a causal role in triggering the cascade of events that leads to developmental stage transitions. This hypothesis offers a framework to rationalise the observations of aerobic glycolysis, atypical mitochondrial metabolism, and metabolic switching in nonproliferating stages

    A Biomathematical Model of Tumor Response to Radioimmunotherapy with PDL1 and CTLA4

    Get PDF
    There is evidence of synergy between radiotherapy and immunotherapy. Radiotherapy can increase liberation of tumor antigens, causing activation of antitumor T-cells. This effect can be boosted with immunotherapy. Radioimmunotherapy has potential to increase tumor control rates. Biomathematical models of response to radioimmunotherapy may help on understanding of the mechanisms affecting response, and assist clinicians on the design of optimal treatment strategies. In this work we present a biomathematical model of tumor response to radioimmunotherapy. The model uses the linear-quadratic response of tumor cells to radiation (or variation of it), and builds on previous developments to include the radiation-induced immune effect. We have focused this study on the combined effect of radiotherapy and PDL1/CTLA4 therapies. The model can fit preclinical data of volume dynamics and control obtained with different dose fractionations and PDL1/CTLA4. A biomathematical study of optimal combination strategies suggests that a good understanding of the involved biological delays, the biokinetics of the immunotherapy drug, and the interplay between them, may be of paramount importance to design optimal radioimmunotherapy schedules. Biomathematical models like the one we present can help to interpret experimental data on the synergy between radiotherapy and immunotherapy, and to assist in the design of more effective treatments

    The Use of a Vaginal Conductivity Probe to Influence Calf Sex Ratio via Altered Insemination Time

    Get PDF
    One hundred eighty-nine mixed breed beef heifers from 13 consignors enrolled in the MACEP heifer development project were utilized in this study. Heifers were synchronized by feeding 0.5 mg melengestrol acetate (MGA) per head per day for 14 days followed by an injection of prostaglandin F2a (PGF2a; 25 mg Lutalyse®) 17 days after the last MGA feeding. Each heifer was fitted with a Heatwatch® transmitter on the morning of PGF2a administration to facilitate detection of estrus. Vaginal conductivity measurements were taken using an Ovatec® probe every 12 hours for 96 hours beginning at the time of PGF2a injection. Heifers randomly assigned to produce a female calf were inseminated near the onset of estrus (as indicated by probe values of £ 55 on the decline). Heifers randomly assigned to produce a male calf were inseminated approximately 24 hours after the onset of estrus (as indicated by probe values of ³ 60 on the incline). All heifers not inseminated by 96 hours after PGF2a were mass inseminated in an attempt to impregnate as many heifers as possible. Heifers that were diagnosed as pregnant as a result of the artificial insemination were subjected to ultrasonography for fetal sex determination. Only 70 of the 189 heifers (37.0%) exhibited estrus according to Heatwatch® and incidence of estrus was influenced by heifer average daily gain, reproductive tract score, and disposition score. Heifers receiving a disposition score of 3 (78.7) had a higher (P\u3c.05) probe reading at AI than those receiving a disposition score of 1 or 2 (70.8 and 72.5, respectively). Heifers with probe readings at insemination of 80 - 84 and \u3e 84 had lower (P\u3c.05) pregnancy rates to AI (13.6 and 0.0%, respectively) than heifers with probe readings in the ranges of \u3c 60, 60 - 64, 65 - 69, 70 - 74, and 75 - 79 (35.7, 40.9, 31.4, 35.3, and 26.9% respectively). Heifers that were bred when probe values were increasing had a lower (P\u3c.05) percentage of male fetuses (34.4%) than those bred during a period of decreasing probe values (69.2% male fetuses). These results demonstrate that a vaginal conductivity probe may be a useful tool to determine an insemination time that could potentially alter calf sex ratio

    Arrhythmia Mechanism and Scaling Effect on the Spectral Properties of Electroanatomical Maps with Manifold Harmonics

    Full text link
    [EN] Introduction: Spatial and temporal processing of intracardiac electrograms provides relevant information to support the arrhythmia ablation during electrophysio-logical studies. Current cardiac navigation systems (CNS) and electrocardiographic imaging (ECGI) build detailed 3-D electroanatomical maps (EAM), which represent the spatial anatomical distribution of bioelectrical features, such as activation time or voltage. Objective: We present a principled methodology for spectral analysis of both EAM geometry and bioelectrical feature in CNS or ECGI, including their spectral representation, cutoff frequency, or spatial sampling rate (SSR). Methods: Existing manifold harmonic techniques for spectral mesh analysis are adapted to account for a fourth dimension, corresponding to the EAM bioelectrical feature. Appropriate scaling is required to address different magnitudes and units. Results: With our approach, simulated and real EAM showed strong SSR dependence on both the arrhythmia mechanism and the cardiac anatomical shape. For instance, high frequencies increased significantly the SSR because of the "early-meets-late" in flutter EAM, compared with the sinus rhythm. Besides, higher frequency components were obtained for the left atrium (more complex anatomy) than for the right atrium in sinus rhythm. Conclusion: The proposed manifold harmonics methodology opens the field toward new signal processing tools for principled EAM spatiofeature analysis in CNS and ECGI, and to an improved knowledge on arrhythmia mechanisms.This work was partly supported by Spanish Research Projects TEC2013-48439-C4-1-R, TEC2016-75361-R, and TEC2016-75161-C2-1-4.Sanroman-Junquera, M.; Mora-Jimenez, I.; Garcia-Alberola, A.; Caamano, AJ.; Trénor Gomis, BA.; Rojo-Alvarez, JL. (2018). Arrhythmia Mechanism and Scaling Effect on the Spectral Properties of Electroanatomical Maps with Manifold Harmonics. IEEE Transactions on Biomedical Engineering (Online). 65(4):723-732. https://doi.org/10.1109/TBME.2017.2716189S72373265

    First observation of 54Zn and its decay by two-proton emission

    Full text link
    The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasi-fragmentation of a 58Ni beam at 74.5 MeV/nucleon in a natNi target. The fragments were analysed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2 +1.8/-0.8 ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models.Comment: 4 pages, 4 figures, accepted for publication in PR

    Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined algorithms for malaria mapping using the impact of reflectance calibration uncertainties on the accuracies of three vegetation indices (VI)'s derived from QuickBird data in three rice agro-village complexes Mwea, Kenya. We also generated inferential statistics from field sampled vegetation covariates for identifying riceland <it>Anopheles arabiensis </it>during the crop season. All aquatic habitats in the study sites were stratified based on levels of rice stages; flooded, land preparation, post-transplanting, tillering, flowering/maturation and post-harvest/fallow. A set of uncertainty propagation equations were designed to model the propagation of calibration uncertainties using the red channel (band 3: 0.63 to 0.69 μm) and the near infra-red (NIR) channel (band 4: 0.76 to 0.90 μm) to generate the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI). The Atmospheric Resistant Vegetation Index (ARVI) was also evaluated incorporating the QuickBird blue band (Band 1: 0.45 to 0.52 μm) to normalize atmospheric effects. In order to determine local clustering of riceland habitats <it>Gi*(d) </it>statistics were generated from the ground-based and remotely-sensed ecological databases. Additionally, all riceland habitats were visually examined using the spectral reflectance of vegetation land cover for identification of highly productive riceland <it>Anopheles </it>oviposition sites.</p> <p>Results</p> <p>The resultant VI uncertainties did not vary from surface reflectance or atmospheric conditions. Logistic regression analyses of all field sampled covariates revealed emergent vegetation was negatively associated with mosquito larvae at the three study sites. In addition, floating vegetation (-ve) was significantly associated with immature mosquitoes in Rurumi and Kiuria (-ve); while, turbidity was also important in Kiuria. All spatial models exhibit positive autocorrelation; similar numbers of log-counts tend to cluster in geographic space. The spectral reflectance from riceland habitats, examined using the remote and field stratification, revealed post-transplanting and tillering rice stages were most frequently associated with high larval abundance and distribution.</p> <p>Conclusion</p> <p>NDVI, SAVI and ARVI generated from QuickBird data and field sampled vegetation covariates modeled cannot identify highly productive riceland <it>An. arabiensis </it>aquatic habitats. However, combining spectral reflectance of riceland habitats from QuickBird and field sampled data can develop and implement an Integrated Vector Management (IVM) program based on larval productivity.</p

    Measurement of two-halo neutron transfer reaction p(11^{11}Li,9^{9}Li)t at 3AA MeV

    Get PDF
    The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time at an incident energy of 3AA MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the \nuc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different \nuc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter

    Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between <it>Culex quinquefasciatus </it>and <it>Anopheles gambiae </it>s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of <it>Cx. quinquefasciatus </it>and <it>An. gambiae </it>s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m × 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's <it>I </it>statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature <it>Cx. quinquefasciatus </it>and <it>An. gambiae </it>s.l. and abundance.</p> <p>Results</p> <p>The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of <it>An. gambiae </it>s.l. larvae were associated with shade while <it>Cx. quinquefasciatus </it>were associated with floating vegetation. Moran's <it>I </it>and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of <it>Anopheles</it>; larvae, however, <it>Culex </it>are not consistently clustered. A stepwise negative binomial regression decomposed the immature <it>An. gambiae </it>s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for <it>Culex </it>(0.24) while for <it>Anopheles </it>there was a negative correlation (-0.23) for a local model distance to stream.</p> <p>Conclusion</p> <p>These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with <it>Culex </it>and <it>Anopheles </it>aquatic habitats.</p
    corecore