416 research outputs found
Brain Rhythms Reveal a Hierarchical Network Organization
Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or âvirtual brainsâ, whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower complexity than virtual brains modeling normal neural function. We finally discuss the implications of our results for the neurobiology of health and disease
How informed is consent in vulnerable populations? Experience using a continuous consent process during the MDP301 vaginal microbicide trial in Mwanza, Tanzania
BACKGROUND: HIV prevention trials conducted among disadvantaged vulnerable at-risk populations in developing countries present unique ethical dilemmas. A key concern in bioethics is the validity of informed consent for trial participation obtained from research subjects in such settings. The purpose of this study was to investigate the effectiveness of a continuous informed consent process adopted during the MDP301 phase III vaginal microbicide trial in Mwanza, Tanzania. METHODS: A total of 1146 women at increased risk of HIV acquisition working as alcohol and food vendors or in bars, restaurants, hotels and guesthouses have been recruited into the MDP301 phase III efficacy and safety trial in Mwanza. During preparations for the trial, participatory community research methods were used to develop a locally-appropriate pictorial flipchart in order to convey key messages about the trial to potential participants. Pre-recorded audio tapes were also developed to facilitate understanding and compliance with gel-use instructions. A comprehension checklist is administered by clinical staff to all participants at screening, enrolment, 12, 24, 40 and 50 week follow-up visits during the trial. To investigate women's perceptions and experiences of the trial, including how well participants internalize and retain key messages provided through a continuous informed consent process, a random sub-sample of 102 women were invited to participate in in-depth interviews (IDIs) conducted immediately after their 4, 24 and 52 week follow-up visits. RESULTS: 99 women completed interviews at 4-weeks, 83 at 24-weeks, and 74 at 52 weeks (a total of 256 interviews). In all interviews there was evidence of good comprehension and retention of key trial messages including that the gel is not currently know to be effective against HIV; that this is the key reason for conducting the trial; and that women should stop using gel in the event of pregnancy. CONCLUSIONS: Providing information to trial participants in a focussed, locally-appropriate manner, using methods developed in consultation with the community, and within a continuous informed-consent framework resulted in high levels of comprehension and message retention in this setting. This approach may represent a model for researchers conducting HIV prevention trials among other vulnerable populations in resource-poor settings. TRIAL REGISTRATION: Current Controlled Trials ISRCTN64716212
ER Stress Induces Anabolic Resistance in Muscle Cells through PKB-Induced Blockade of mTORC1
Anabolic resistance is the inability to increase protein synthesis in response to an increase in amino acids following a meal. One potential mediator of anabolic resistance is endoplasmic reticulum (ER) stress. The purpose of the present study was to test whether ER stress impairs the response to growth factors and leucine in muscle cells
A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain
In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 ÎŒg/g to ~ 9 ÎŒg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain
Defects in tRNA Modification Associated with Neurological and Developmental Dysfunctions in Caenorhabditis elegans Elongator Mutants
Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5âČmethylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development
Neuromarketing and consumer neuroscience:contributions to neurology
Background: 'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience.Discussion: In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research.Summary: We identify the following areas where consumer neuroscience could contribute to the field of neurology:. First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks empirical behavioral and neuroscientific evidence. Neurologists entering this field of research could profit from the extensive knowledge of the biological foundation of trust that scientists in economically-orientated neurosciences have gained.Fourth, neurologists could contribute significantly to the ethical debate about invasive methods in neuromarketing and consumer neuroscience. Further, neurologists should investigate biological and behavioral reactions of neurological patients to marketing and advertising measures, as they could show special consumer vulnerability and be subject to target marketing
The genetic epidemiology of joint shape and the development of osteoarthritis
Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts forâ~â50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV
This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7
Measurement of the ttÂŻttÂŻ production cross section in pp collisions at âs=13 TeV with the ATLAS detector
A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fbâ1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17â15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7â6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb
- âŠ