969 research outputs found

    On the non-abelian Brumer-Stark conjecture and the equivariant Iwasawa main conjecture

    Get PDF
    We show that for an odd prime p, the p-primary parts of refinements of the (imprimitive) non-abelian Brumer and Brumer-Stark conjectures are implied by the equivariant Iwasawa main conjecture (EIMC) for totally real fields. Crucially, this result does not depend on the vanishing of the relevant Iwasawa mu-invariant. In combination with the authors' previous work on the EIMC, this leads to unconditional proofs of the non-abelian Brumer and Brumer-Stark conjectures in many new cases.Comment: 33 pages; to appear in Mathematische Zeitschrift; v3 many minor updates including new title; v2 some cohomological arguments simplified; v1 is a revised version of the second half of arXiv:1408.4934v

    An opinion paper: emphasis on white muscle development and growth to improve farmed fish flesh quality

    Get PDF
    Due to rapid depletion of wild stocks, the necessity to cultivate fish is eminent. Current fish farming practices seek to improve flesh quality. The notion that white muscles are the main target of the fishing industry is emphasized. A novel approach is suggested based on the development of white muscles in wild fish from eggs to adults. A compilation of facts about white muscle structure, function and ontogeny is followed by an account of the changes in swimming behaviour and performance related to the use of white muscle during growth from larva to adult. Ecological data narrate early swimming performance with white muscle development and growth, unveiling some of the important natural selection factors eliminating weak swimmers and poor growers from the breeding stock. A comparison between fish culture practise and natural conditions reveals fundamental differences. New approaches following wild breeding processes promise several important advantages regarding the quality of white muscle

    Early Clinical and Subclinical Visual Evoked Potential and Humphrey's Visual Field Defects in Cryptococcal Meningitis.

    Get PDF
    Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey's visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Thermodynamic curvature and black holes

    Full text link
    I give a relatively broad survey of thermodynamic curvature RR, one spanning results in fluids and solids, spin systems, and black hole thermodynamics. RR results from the thermodynamic information metric giving thermodynamic fluctuations. RR has a unique status in thermodynamics as being a geometric invariant, the same for any given thermodynamic state. In fluid and solid systems, the sign of RR indicates the character of microscopic interactions, repulsive or attractive. R|R| gives the average size of organized mesoscopic fluctuating structures. The broad generality of thermodynamic principles might lead one to believe the same for black hole thermodynamics. This paper explores this issue with a systematic tabulation of results in a number of cases.Comment: 27 pages, 10 figures, 7 tables, 78 references. Talk presented at the conference Breaking of Supersymmetry and Ultraviolet Divergences in extended Supergravity, in Frascati, Italy, March 27, 2013. v2 corrects some small problem

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
    corecore