1,214 research outputs found

    The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to M.L.V. Galippe

    Get PDF
    In both managed and natural ecosystems, a wide range of various non-nodulating bacteria can thrive as endophytes in the plant interior, and some can be beneficial to their hosts (Hallmann and Berg 2007; Reinhold-Hurek and Hurek 2011). Colonizationmechanisms, the ecology and functioning of these endophytic bacteria as well as their interactions with plants have been investigated (Hardoim et al. 2008; Compant et al. 2010). Although the source of colonization can also be the spermosphere, anthosphere, caulosphere, and the phyllosphere,most endophytic bacteria are derived from the soil environment (Hallmann and Berg 2007; Compant et al. 2010)

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan

    Get PDF
    INTRODUCTION: Although breast carcinoma (BC) is the most common malignancy affecting Jordanian females and the affected population in Jordan is younger than that in the West, no information is available on its biological characteristics. Our aims in this study are to evaluate the expression of estrogen receptor (ER) and progesterone receptor (PR) and Her-2/neu overexpression in BC in Jordan, and to compare the expression of these with other prognostic parameters for BC such as histological type, histological grade, tumor size, patients' age, and number of lymph node metastases. METHOD: This is a retrospective study conducted in the Department of Pathology at Jordan University of Science and Technology. A confirmed 91 cases of BC diagnosed in the period 1995 to 1998 were reviewed and graded. We used immunohistochemistry to evaluate the expression of ER, PR, and Her-2. Immunohistochemical findings were correlated with age, tumor size, grade and axillary lymph node status. RESULTS: Her-2 was overexpressed in 24% of the cases. The mean age of Her-2 positive cases was 42 years as opposed to 53 years among Her-2 negative cases (p = 0.0001). Her-2 expression was inversely related to ER and PR expression. Her-2 positive tumors tended to be larger than Her-2 negative tumors with 35% overexpression among T3 tumors as opposed to 22% among T2 tumors (p = 0.13). Her-2 positive cases tended to have higher rates of axillary metastases, but this did not reach statistical significance. ER and PR positive cases were seen in older patients with smaller tumor sizes. CONCLUSION: Her-2 overexpression was seen in 24% of BC affecting Jordanian females. Her-2 overexpression was associated with young age at presentation, larger tumor size, and was inversely related to ER and PR expression. One-fifth of the carcinomas were Her-2 positive and ER negative. This group appears to represent an aggressive form of BC presenting at a young age with large primary tumors and a high rate of four or more axillary lymph node metastases

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    On opportunistic software reuse

    Get PDF
    The availability of open source assets for almost all imaginable domains has led the software industry toopportunistic design-an approach in which people develop new software systems in an ad hoc fashion by reusing and combining components that were not designed to be used together. In this paper we investigate this emerging approach. We demonstrate the approach with an industrial example in whichNode.jsmodules and various subsystems are used in an opportunistic way. Furthermore, to study opportunistic reuse as a phenomenon, we present the results of three contextual interviews and a survey with reuse practitioners to understand to what extent opportunistic reuse offers improvements over traditional systematic reuse approaches.Peer reviewe

    Isolated and dynamical horizons and their applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte

    Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode <it>Caenorhabditis elegans</it>, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success.</p> <p>Results</p> <p>We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners.</p> <p>Conclusions</p> <p>We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that <it>C. elegans </it>harbors substantial heritable variation for traits contributing to male reproductive success. <it>C. elegans </it>provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.</p
    corecore