98 research outputs found

    Development and Application of Microsatellites in Carcinus maenas: Genetic Differentiation between Northern and Central Portuguese Populations

    Get PDF
    Carcinus maenas, the common shore crab of European coastal waters, has recently gained notoriety due to its globally invasive nature associated with drastic ecological and economic effects. The native ubiquity and worldwide importance of C. maenas has resulted in it becoming one of the best-studied estuarine crustacean species globally. Accordingly, there is significant interest in investigating the population genetic structure of this broadly distributed crab along European and invaded coastlines. Here, we developed polymerase chain reaction (PCR) primers for one dinucleotide and two trinucleotide microsatellite loci, resulting from an enrichment process based on Portuguese populations. Combining these three new markers with six existing markers, we examined levels of genetic diversity and population structure of C. maenas in two coastal regions from Northern and Central Portugal. Genotypes showed that locus polymorphism ranged from 10 to 42 alleles (Nβ€Š=β€Š135) and observed heterozygosity per locus ranged from 0.745 to 0.987 with expected heterozygosity ranging from 0.711 to 0.960; values typical of marine decapods. The markers revealed weak, but significant structuring among populations (global FSTβ€Š=β€Š0.004) across a 450 km (over-water distance) spatial scale. Combinations of these and existing markers will be useful for studying population genetic parameters at a range of spatial scales of C. maenas throughout its expanding species range

    Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy

    Get PDF
    Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.</p

    Moderate Multiple Parentage and Low Genetic Variation Reduces the Potential for Genetic Incompatibility Avoidance Despite High Risk of Inbreeding

    Get PDF
    Background: Polyandry is widespread throughout the animal kingdom. In the absence of direct benefits of mating with different males, the underlying basis for polyandry is enigmatic because it can carry considerable costs such as elevated exposure to sexual diseases, physical injury or other direct fitness costs. Such costs may be balanced by indirect genetic benefits to the offspring of polyandrous females. We investigated polyandry and patterns of parentage in the spider Stegodyphus lineatus. This species experiences relatively high levels of inbreeding as a result of its spatial population structure, philopatry and limited male mating dispersal. Polyandry may provide an opportunity for post mating inbreeding avoidance that reduces the risk of genetic incompatibilities arising from incestuous matings. However, multiple mating carries direct fitness costs to females suggesting that genetic benefits must be substantial to counter direct costs. Methodology/Principal Findings: Genetic parentage analyses in two populations from Israel and a Greek island, showed mixed-brood parentage in approximately 50 % of the broods. The number of fathers ranged from 1–2 indicating low levels of multiple parentage and there was no evidence for paternity bias in mixed-broods from both populations. Microsatellite loci variation suggested limited genetic variation within populations, especially in the Greek island population. Relatedness estimates among females in the maternal generation and potentially interacting individuals were substantial indicating fullsib and half-sib relationships

    Genetic diversity and local connectivity in the mediterranean red gorgonian coral after mass mortality events

    Get PDF
    Estimating the patterns of connectivity in marine taxa with planktonic dispersive stages is a challenging but crucial task because of its conservation implications. The red gorgonian Paramuricea clavata is a habitat forming species, characterized by short larval dispersal and high reproductive output, but low recruitment. In the recent past, the species was impacted by mass mortality events caused by increased water temperatures in summer. In the present study, we used 9 microsatellites to investigate the genetic structure and connectivity in the highly threatened populations from the Ligurian Sea (NW Mediterranean). No evidence for a recent bottleneck neither decreased genetic diversity in sites impacted by mass mortality events were found. Significant IBD pattern and high global F-ST confirmed low larval dispersal capability in the red gorgonian. The maximum dispersal distance was estimated at 20-60 km. Larval exchange between sites separated by hundreds of meters and between different depths was detected at each site, supporting the hypothesis that deeper subpopulations unaffected by surface warming peaks may provide larvae for shallower ones, enabling recovery after climatically induced mortality events

    Global Phylogeography with Mixed-Marker Analysis Reveals Male-Mediated Dispersal in the Endangered Scalloped Hammerhead Shark (Sphyrna lewini)

    Get PDF
    Background: The scalloped hammerhead shark, Sphyrna lewini, is a large endangered predator with a circumglobal distribution, observed in the open ocean but linked ontogenetically to coastal embayments for parturition and juvenile development. A previous survey of maternal (mtDNA) markers demonstrated strong genetic partitioning overall (global W ST = 0.749) and significant population separations across oceans and between discontinuous continental coastlines. Methodology/Principal Findings: We surveyed the same global range with increased sample coverage (N = 403) and 13 microsatellite loci to assess the male contribution to dispersal and population structure. Biparentally inherited microsatellites reveal low or absent genetic structure across ocean basins and global genetic differentiation (FST = 0.035) over an order of magnitude lower than the corresponding measures for maternal mtDNA lineages (W ST = 0.749). Nuclear allelic richness and heterozygosity are high throughout the Indo-Pacific, while genetic structure is low. In contrast, allelic diversity is low while population structure is higher for populations at the ends of the range in the West Atlantic and East Pacific. Conclusions/Significance: These data are consistent with the proposed Indo-Pacific center of origin for S. lewini, and indicate that females are philopatric or adhere to coastal habitats while males facilitate gene flow across oceanic expanses. This study includes the largest sampling effort and the most molecular loci ever used to survey the complete range of

    Local selection in the presence of high levels of gene flow: Evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations

    Get PDF
    Background: Culex quinquefasciatus collected in Uganda, where no vector control interventions directly targeting this species have been conducted, was used as a model to determine if it is possible to detect heterogeneities in selection pressure driven by insecticide application targeting other insect species. Methodology/Principal findings: Population genetic structure was assessed through microsatellite analysis, and the impact of insecticide pressure by genotyping two target-site mutations, Vgsc-1014F of the voltage-gated sodium channel target of pyrethroid and DDT insecticides, and Ace1-119S of the acetylcholinesterase gene, target of carbamate and organophosphate insecticides. No significant differences in genetic diversity were observed among populations by microsatellite markers with HE ranging from 0.597 to 0.612 and low, but significant, genetic differentiation among populations (FST = 0.019, P = 0.001). By contrast, the insecticide-resistance markers display heterogeneous allelic distributions with significant differences detected between Central Ugandan (urban) populations relative to Eastern and Southwestern (rural) populations. In the central region, a frequency of 62% for Vgsc-1014F, and 32% for the Ace1-119S resistant allele were observed. Conversely, in both Eastern and Southwestern regions the Vgsc-1014F alleles were close to fixation, whilst Ace1-119S allele frequency was 12% (although frequencies may be underestimated due to copy number variation at both loci). Conclusions/Significance: Taken together, the microsatellite and both insecticide resistance target-site markers provide evidence that in the face of intense gene flow among populations, disjunction in resistance frequencies arise due to intense local selection pressures despite an absence of insecticidal control interventions targeting Culex

    Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    Get PDF
    BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity

    Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    Get PDF
    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna
    • …
    corecore