33 research outputs found

    Characterizing driver–response relationships in marine pelagic ecosystems for improved ocean management

    Get PDF
    Scientists and resources managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressor. However, a growing body of literature demonstrates that many relationships are non-linear, where small changes in a driver prompt a disproportionately large ecological response. Here we aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focus our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relationships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency - on average 11% more. Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socio-economic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables, but are also associated with local stressors such as overfishing and pollution that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information about threshold responses to guide how other stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce uncertainty around threshold values improve, managers will be able to better understand and account for ubiquitous non-linear relationships

    Strengthening confidence in climate change impact science

    Get PDF
    Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature

    A novel piggybac transposon inducible expression system identifies a role for akt signalling in primordial germ cell migration

    Get PDF
    In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development

    Temperature Anomalies and Mortality Events in Marine Communities: Insights on Factors behind Differential Mortality Impacts in the NW Mediterranean

    Get PDF
    Two large-scale mass mortality events (MMEs) of unprecedented extent and severity affecting rocky benthic communities occurred during the summers of 1999 and 2003 along the coasts of the NW Mediterranean Sea. These mortality outbreaks were associated with positive thermal anomalies. In this study, we performed an analysis of inter-regional and inter-annual differences in temperature (T) conditions associated with MMEs of the red gorgonian Paramuricea clavata by analyzing high resolution T time series (hourly records for 3 to 8 years) from four regions of the NW Mediterranean with differing hydrological conditions and biological impacts. High resolution records allowed a detailed analysis using classical and new descriptors to characterize T anomalies. We were able to determine that the MMEs were triggered by two main types of positive thermal anomalies, with the first type being characterized by short periods (2 to 5 days) with high Mean T reaching more than 27°C in some regions and being associated with high intra-day and intra-period variability, while the second type of anomaly presented long duration (near one month) at warm T (24°C) with low intra-period variability. Inter-regional patterns arose; some regions displayed both types of anomalies, while others exhibited only one type. The results showed that T conditions should be considered as the main factor that explains the observed inter-regional and inter-annual differences in mortality impacts. In explaining these differences, the late timing of T anomalies, in addition to their magnitude was found to be determinant. Finally, by combining thermotolerance experimental data with the maximal T stress conditions observed in the four regions, we were able to determine the differential risk of mass mortality across regions. We conclude that expanding high resolution T series is important for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change

    Global priority areas for incorporating land-sea connections in marine conservation

    Full text link
    Coastal marine ecosystems rank among the most productive ecosystems on earth but are also highly threatened by the exposure to both ocean- and landbased human activities. Spatially explicit information on the distributions of land-based impacts is critical for managers to identify where the effects of landbased activities on ecosystem condition are greatest and, therefore, where they should prioritize mitigation of land-based impacts. Here, we quantify the global cumulative impact of four of the most pervasive land-based impacts on coastal ecosystemsnutrient input, organic and inorganic pollution, and the direct impact of coastal populations (e.g., coastal engineering and trampling)and identify hotspots of land-based impact using a variety of metrics. These threat hotspots were primarily in Europe and Asia, with the top three adjacent to the Mississippi, Ganges, and Mekong river

    Marine spatial planning makes room for offshore aquaculture in crowded coastal waters.

    No full text
    Marine spatial planning (MSP) seeks to reduce conflicts and environmental impacts, and promote sustainable use of marine ecosystems. Existing MSP approaches have successfully determined how to achieve target levels of ocean area for particular uses while minimizing costs and impacts, but they do not provide a framework that derives analytical solutions in order to co-ordinate siting of multiple uses while balancing the effects of planning on each sector in the system. We develop such a framework for guiding offshore aquaculture (bivalve, finfish, and kelp farming) development in relation to existing sectors and environmental concerns (wild-capture fisheries, viewshed quality, benthic pollution, and disease spread) in California, USA. We identify > 250,000 MSP solutions that generate significant seafood supply and billions of dollars in revenue with minimal impacts (often < 1%) on existing sectors and the environment. We filter solutions to identify candidate locations for high-value, low-impact aquaculture development. Finally, we confirm the expectation of substantial value of our framework over conventional planning focused on maximizing individual objectives
    corecore