7 research outputs found

    State-of-the-art laser adhesion test (LASAT)

    Get PDF
    This paper proposes a state-of-the-art laser adhesion test. It consists of testing material interfaces with laser-driven shock wave. Since the first demonstration in the 1980s by Vossen, many studies and developments have been done. This paper presents recent experiments and developments on the basic physics involved. Results show the ability of the technique to perform a quantitative adhesion test for a wide range of materials and configurations. Edge effect principle and ultra-short shock wave give perspectives for new applications for multi-layer combination of material. Fundamental principles are evidenced through experiments on bulk ductile materials before demonstrating their application to coated systems

    Etude du comportement dynamique de matériaux sous choc laser subpicoseconde

    No full text
    Laser driven shocks allow to investigate materials behavior at high strain rate and presents a great interest for research applications, but also for industry fields. The latest laser technologies evolutions provide an access to shorter regimes in durations, going below the picosecond. This work, which results from a collaboration between the P' institute, the PIMM laboratory and the CEA‐DAM, is dedicated to characterize the metallic material behavior in this ultra‐short mode, (aluminium, tantalum), leading to extreme dynamic solicitation in the target (>107s‐1). The study includes the validation of experimental results obtained on the LULI 100TW facility by comparison with numerical model. First, the study is orientated to the femtosecond (fs) laser‐matter interaction, which is different from what happens in nanosecond regime. Indeed, the characteristic duration scale is comparable to several molecular phenomena like non‐equilibrium electrons‐ions states. The aim is to determine the equivalent pressure loading induced by the laser pulse on the target. Then, we have studied the shock wave propagation within the target and particularly its pressure decay, particularly strong in this regime. In this configuration, the spalls observed are thin, a few ÎŒm order, and show a planar rupture morphology. The results obtained by post‐mortem observation show that the spall thickness is thinner if the target thickness is reduced. The spalls are characterized by the VISAR measurement. Within the framework of dynamic damage modeling and rupture criteria dimensioning, particularly those which have been validated in the ns regime as Kanel, shots with different thicknesses have been carried out to determine the damage properties in function of strain rate and validate the parameters by prolongation to the ultra‐shorts modes. Then, the study has been generalized to the 2D propagation waves, which can explain the spall diameter evolutions. Meanwhile, microscopic simulations of ultra‐short laser driven shock on micrometric single‐crystal metals have been performed by using the CEA‐DAM molecular dynamic codes. This method, complementary to continuum models, provides an analysis the microscopic processes related to damage (ductile pore nucleation and growth). The high strain rates involved, around 109s‐1, allow to approach the inter‐atomic theoretical cohesion threshold. By the end, the results obtained in both ultra‐short and 2D regimes are of great interest for applications such as the adhesion test of thin coating by laser driven shock (LASAT), open the way to news LASAT extensions. As example, various fields in the industry (optics, electronics...) use micrometric coatings, but there are actually few ways to characterize their mechanical properties precisely. The transposition of the LASAT process to the fs regime has been tested on multi‐layer solar‐cell‐like, and has confirmed the possibility to debond sub‐micrometric layers and determine its adhesion threshold.Les chocs induits par laser de puissance permettent d'investir le comportement hautement dynamique des matĂ©riaux, d'un grand intĂ©rĂȘt tant pour la recherche fondamentale que pour l'industrie. L'Ă©volution des technologies laser ces derniĂšres annĂ©es a permis d'accĂ©der Ă  des rĂ©gimes plus courts, en dessous de la picoseconde. L'objectif de ce travail, rĂ©sultat d'une collaboration entre l'institut P', le PIMM et le CEA‐DAM est de caractĂ©riser le comportement sous choc de matĂ©riaux mĂ©talliques (Aluminium, Tantale,...) dans ce rĂ©gime ultra‐bref, conduisant Ă  des sollicitations dynamiques extrĂȘmes (>107s‐1). L'Ă©tude repose sur la comparaison et la validation de modĂšles numĂ©riques Ă  des rĂ©sultats expĂ©rimentaux obtenus sur la chaĂźne 100TW du LULI. Cette caractĂ©risation passe dans un premier temps par l'Ă©tude de l'interaction laser‐matiĂšre afin caractĂ©riser le chargement Ă©quivalent en pression sur la cible. Les processus en rĂ©gime ultra‐bref sont diffĂ©rents de ce qui est connu en rĂ©gime nanoseconde : en effet, l'Ă©chelle de temps, quelques picosecondes, est du mĂȘme ordre que bon nombres de phĂ©nomĂšnes molĂ©culaires tel que le dĂ©sĂ©quilibre Ă©lectrons‐ions. Ensuite, nous avons Ă©tudiĂ© l'Ă©volution de l'onde de choc et son amortissement, trĂšs prononcĂ© dans ce rĂ©gime. L'Ă©caillage dans une telle configuration se produit par couches trĂšs minces (quelques ÎŒm) et rĂ©guliĂšres dans ce rĂ©gime. L'endommagement obtenu est caractĂ©risĂ© par la mesure VISAR. Les rĂ©sultats obtenus par observations post‐mortem jusqu'Ă  prĂ©sent montrent que plus l'Ă©paisseur de cible est faible, plus l'Ă©paisseur d'Ă©caille diminue, pouvant atteindre l'Ă©chelle du micron. Dans le cadre de la modĂ©lisation de l'endommagement et le dimensionnement des critĂšres d'endommagement utilisĂ©s et Ă©prouvĂ©s en rĂ©gime nanoseconde (Kanel), des essais Ă  diffĂ©rentes Ă©paisseurs de cible ont Ă©tĂ© rĂ©alisĂ©s afin d'observer les consĂ©quences d'une variation de vitesse de dĂ©formation sur l'endommagement, et gĂ©nĂ©raliser le modĂšle de Kanel au rĂ©gime ultra‐bref, et plus gĂ©nĂ©ralement en fonction de la vitesse de dĂ©formation. L'ensemble des rĂ©sultats relatifs Ă  l'endommagement est gĂ©nĂ©ralisĂ© Ă  des configurations 2D, permettant notamment de caractĂ©riser l'Ă©volution du diamĂštre d'Ă©caille. En parallĂšle, des simulations microscopiques par dynamique molĂ©culaire de choc laser ultra‐bref sur des cibles monocristallines de Tantale Ă  l'Ă©chelle du micron ont Ă©tĂ© menĂ©es au CEA‐DAM donnent un point de vue complĂ©mentaire des processus microscopiques liĂ©s Ă  l'endommagement Ă  des vitesses de dĂ©formation aux abords de la limite de cohĂ©sion thĂ©orique. Les rĂ©sultats obtenus sur les chocs ultra‐brefs et 2D prĂ©sentent un grand intĂ©rĂȘt pour le dĂ©veloppement du test d'adhĂ©rence de revĂȘtements par choc laser (LASAT), offrant la possibilitĂ© de nouvelles extensions pour le procĂ©dĂ© LASAT. Par exemple, de nombreux domaines industriels utilisent des revĂȘtements micromĂ©triques (optique, Ă©lectronique, ...) mais il existe peu de mĂ©thodes pour caractĂ©riser leurs propriĂ©tĂ©s avec fiabilitĂ©. Des essais de transposition de LASAT en rĂ©gime femtoseconde sur des cellules photovoltaĂŻques ont dĂ©montrĂ© la possibilitĂ© d'Ă©jecter des revĂȘtements submicromĂ©triques et caractĂ©riser leur seuil d'adhĂ©rence

    Etude du comportement dynamique de matériaux sous choc laser sub-picoseconde

    No full text
    Le travail prĂ©sentĂ© a pour objectif d'Ă©tudier le comportement de mĂ©taux soumis Ă  un choc laser femtoseconde, amenant Ă  des sollicitations dynamiques extrĂȘmes (>107s-1). Dans ces conditions, on peut dĂ©coupler les phĂ©nomĂšnes en 3 parties : l'interaction laser-matiĂšre ultra-brĂšve donnant naissance Ă  l'impulsion en pression, la propagation de l'onde et sons attĂ©nuation dans la cible, trĂšs prononcĂ©e en raison de la briĂšvetĂ© du chargement et l'endommagement en face arriĂšre par Ă©caillage. Les modĂšles utilisĂ©s pour restituer ce comportement ont Ă©tĂ© validĂ©s dans ce rĂ©gime par comparaison avec des donnĂ©es expĂ©rimentales de tirs effectuĂ©s sur le laser fs 100TW du LULI (VISAR, post-mortem). En raison des ordres de grandeurs expĂ©rimentaux impliquĂ©s, proches de ceux employĂ©s en Dynamique MolĂ©culaire ( m et ps), une Ă©tude microscopique de l'Ă©caillage ductile a Ă©tĂ© effectuĂ©e au CEA-DAM. Les rĂ©sultats obtenus, cohĂ©rents avec la physique des chocs et de l'endommagement, permet d'explorer des rĂ©gimes ultra-dynamiques (>109s-1) oĂč le seuil d'endommagement approche la force thĂ©orique de dĂ©cohĂ©sion interatomique. Toutes les donnĂ©es dĂ©duites permettent de dĂ©crire le comportement d'un modĂšle en fonction de la vitesse de dĂ©formation, dans notre cas Kanel. L'ensemble de l'Ă©tude a ensuite Ă©tĂ© gĂ©nĂ©ralisĂ© Ă  des configurations 2D, permettant notamment de caractĂ©riser l'Ă©volution du diamĂštre d'Ă©caille, source complĂ©mentaire d'informations sur l'endommagement. Ce type d'approche peut ĂȘtre transposĂ© Ă  des cibles multicouches pour dĂ©terminer l'adhĂ©rence de revĂȘtements (ProcĂ©dĂ© LASAT). Les sources ultra-brĂšves ont permis de provoquer la dĂ©cohĂ©sion des couches sub-micromĂ©triques et mesurer leur adhĂ©rence.This work consists in studying the behavior of metals submitted to femtosecond laser driven shocks, leading to highly dynamic solicitations (>107s-1). In these conditions, phenomena can be separated into 3 parts : ultra-short laser matter interaction which generates the pressure pulse, wave propagation and decay, very strong because of brief loading duration, and finally damage mechanics induced by spallation close to the target free surface. The numerical models used to reproduce this behavior have been validated in this regime by comparison with experimental data obtained on the LULI 100TW fs laser facility (VISAR, sample microscopy...). By considering the involved space-time characteristic scales, close to those actually available in molecular Dynamic approach ( m and ps), a microscopic study of ductile spallation has been performed with CEA-DAM. The related results are consistent with both shock and damage physics. Moreover, they allow to explore ultra-dynamic regimes (>109s-1) where the damage threshold is close to the theoretical interatomic decohesion force limit. All the data obtained make possible to describe a damage model behavior in function of strain rate, Kanel in this work. The study has been then generalized for 2D configurations, giving access in particular to the spall diameter evolution characterization which constitutes a complementary information source about damage mechanisms. This kind of approach can be transposed to multilayer targets in order to determine coatings adhesion (LASAT process). The ultra-short lasers allowed to debond sub-micrometric layers and then deduce their adhesion strength.POITIERS-BU Sciences (861942102) / SudocSudocFranceF

    Examples of How Increased Formability through High Strain Rates Can Be Used in Electro-Hydraulic Forming and Electromagnetic Forming Industrial Applications

    No full text
    In order to take up some challenges in metal forming coming from the recent environmental stakes, Electromagnetic Forming and Electro-Hydraulic Forming processes have been developed at the industrial scale, using the advantages of high strain rates. Such progress has been possible in particular thanks to the emergence of strongly coupled simulation tools. In this article, some examples have been selected from some industrial applications in deep forming, postforming, embossing, and complex shapes forming. It shows how in particular, the increase in formability can bring benefits to solve customer issues in the automotive, luxury packaging, aeronautic, and particles accelerator sectors. Some simulation results are presented to explain how this highly dynamic forming occurs for each of these applications

    Can the lunar crust be magnetized by shock: Experimental groundtruth

    Get PDF
    Since the first evidence of magnetized lunar crust, two mechanisms of magnetization have been suggested to account for lunar magnetism: thermoremanent magnetization (TRM), or shock remanent magnetization (SRM). We present here the first experimental acquisition of shock remanence by lunar rocks in the 0.1-2. GPa range, and discuss their implications for the interpretation of the paleomagnetic record of these rocks, as well as for the distribution of magnetic anomalies revealed by orbital data. Laser shock experiments in controlled magnetic fields performed on lunar mare basalts demonstrated that in the presence of an ambient field these rocks can be magnetized significantly starting at low pressure (~ 0.1. GPa). Hydrostatic loading experiments up to 1.8. GPa in controlled magnetic fields were used to impart piezo-remanent magnetization (an analogue for shock remanent magnetization) to mare basalts and highland regolith breccias. These experiments allow quantifying the shock remanence as a function of pressure and ambient field. Regarding the lunar antipodal magnetic anomaly model, our results show that lunar soils, regolith breccia and about 40% of lunar highland rocks (comprising regolith and impact-melt breccia) in the upper crust can be magnetized by low pressure shocks (< 10. GPa) to sufficient levels to account for the observed lunar antipodal anomalies. Therefore, the antipodal magnetization model appears to be plausible based on our experimental results, provided that several km of regolith and/or impact-processed rocks can be found at the antipodes of large impact basins. For typical lunar rocks dominated by multidomain FeNi with low Ni content, the maximum remanent magnetization that can be acquired during a low pressure shock (< 10. GPa) is about a third of what is expected for a TRM acquired in the same ambient field. Some mare basalts have identical coercivity spectra for their natural remanent magnetization and their SRM, leaving open the possibility that the NRM was imparted during an impact at the lunar surface. In that case, magnetizing fields of the order of 40 to 95 ÎŒT are required. SRM acquisition experiments appear necessary to ground the interpretation of lunar paleomagnetism, and should become a standard technique in lunar and extraterrestrial paleomagnetism
    corecore