38,657 research outputs found

    Possible scenario for MaVaN's as the only neutrino flavor conversion mechanism in the Sun

    Full text link
    Mass Varying neutrino mechanisms were proposed to link the neutrino mass scale with dark energy, addressing the coincidence problem. In some scenarios this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this article we investigate the possibility that a neutrino effective mass is the only flavour conversion mechanism acting in neutrino oscillation experiments. We present a parameterization on the environmental effects on neutrino mass that produces the right flavour conversion probabilities for solar and terrestrial neutrinos experiments.Comment: 12 pages, 4 figure

    Collision-Dependent Atom Tunnelling Rate in Bose-Einstein Condensates

    Full text link
    We show that the interaction (cross-collision) between atoms trapped in distinct sites of a double-well potential can significantly increase the atom tunneling rate for special trap configurations leading to an effective linear Rabi regime of population oscillation between the trap wells. The inclusion of cross-collisional effects significantly extends the validity of the two-mode model approach allowing it to be alternatively employed to explain the recently observed increase of tunneling rates due to nonlinear interactions.Comment: 4 pages, 2 figures. Replaced with improved versio

    Optimal Conditions for Atomic Homodyne Detection on Bose-Einstein Condensates

    Get PDF
    The dynamics of a two-mode Bose-Einstein condensate trapped in a double-well potential results approximately in an effective Rabi oscillation regime of exchange of population between both wells for sufficiently strong overlap between the modes functions. Facing this system as a temporal atomic beam splitter we show that this regime is optimal for a nondestructive atom-number measurement allowing an atomic homodyne detection, thus yielding indirect relative phase information about one of the two-mode condensates.Comment: 9 pages, 5 figure

    The Origin of Fluorine: Abundances in AGB Carbon Stars Revisited

    Get PDF
    Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluorine. Nowadays there is not a consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Using new spectroscopic tools and LTE spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J and SC spanning a wide range of metallicities. On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling in a different way the radiative/convective interface at the base of the convective envelope. New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.Comment: 9 pages, 4 figures, accepted in A&

    Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence

    Get PDF
    Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common. Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics. This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections. A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others. Four configurations with different bed discordance ratios were investigated. The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces. The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step. Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio. It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently. (C) 2019 Hohai University. Production and hosting by Elsevier B.V
    corecore