25 research outputs found

    Distributed Stochastic Power Control in Ad-hoc Networks: A Nonconvex Case

    Get PDF
    Utility-based power allocation in wireless ad-hoc networks is inherently nonconvex because of the global coupling induced by the co-channel interference. To tackle this challenge, we first show that the globally optimal point lies on the boundary of the feasible region, which is utilized as a basis to transform the utility maximization problem into an equivalent max-min problem with more structure. By using extended duality theory, penalty multipliers are introduced for penalizing the constraint violations, and the minimum weighted utility maximization problem is then decomposed into subproblems for individual users to devise a distributed stochastic power control algorithm, where each user stochastically adjusts its target utility to improve the total utility by simulated annealing. The proposed distributed power control algorithm can guarantee global optimality at the cost of slow convergence due to simulated annealing involved in the global optimization. The geometric cooling scheme and suitable penalty parameters are used to improve the convergence rate. Next, by integrating the stochastic power control approach with the back-pressure algorithm, we develop a joint scheduling and power allocation policy to stabilize the queueing systems. Finally, we generalize the above distributed power control algorithms to multicast communications, and show their global optimality for multicast traffic.Comment: Contains 12 pages, 10 figures, and 2 tables; work submitted to IEEE Transactions on Mobile Computin

    Impact of quantized inter-agent communications on game-theoretic and distributed optimization algorithms

    Get PDF
    Quantized inter-agent communications in game-theoretic and distributed optimization algorithms generate uncertainty that affects the asymptotic and transient behavior of such algorithms. This chapter uses the information-theoretic notion of differential entropy power to establish universal bounds on the maximum exponential convergence rates of primal-dual and gradient-based Nash seeking algorithms under quantized communications. These bounds depend on the inter-agent data rate and the local behavior of the agents’ objective functions, and are independent of the quantizer structure. The presented results provide trade-offs between the speed of exponential convergence, the agents’ objective functions, the communication bit rates, and the number of agents and constraints. For the proposed Nash seeking algorithm, the transient performance is studied and an upper bound on the average time required to settle inside a specified ball around the Nash equilibrium is derived under uniform quantization. Furthermore, an upper bound on the probability that the agents’ actions lie outside this ball is established. This bound decays double exponentially with time

    Energy-Efficient MIMO Multiuser Systems: Nash Equilibrium Analysis

    No full text
    International audienceIn this paper, an energy efficiency (EE) game in a MIMO multiple access channel (MAC) communication system is considered. The existence and the uniqueness of the Nash Equilibrium (NE) is affirmed. A bisection search algorithm is designed to find this unique NE. Despite being sub-optimal for deploying the ε-approximate NE of the game when the number of antennas in transmitter is unequal to receiver’s, the policy found by the proposed algorithm is shown to be more efficient than the classical allocation techniques. Moreover, compared to the general algorithm based on fractional programming technique, our proposed algorithm is easier to implement. Simulation shows that even the policy found by proposed algorithm is not the NE of the game, the deviation w.r.t. to the exact NE is small and the resulted policy actually Pareto-dominates the unique NE of the game at least for 2-user situation

    Personality and repeated suicide attempts in dependent adolescents and young adults.

    No full text
    This study compared personality characteristics of subjects with dependence disorders who had previously made a suicide attempt. The population, recruited in France, Belgium, and Switzerland, was composed of 570 subjects (225 females, 345 males, mean age = 27.3, SD = 8.5). The subjects' psychological dimensions were investigated by means of several self-report questionnaires including: BDI-13 (Beck), Sensation-Seeking Scale (Zuckerman), Toronto Alexithymia Scale (Taylor), Interpersonal Dependency Inventory (Hirschfeld), MMPI-2, and some additional scales. For most dimensions, repeat attempters, both past and recent, but more specifically the recent repeaters, had a more severe psychological profile compared to the other suicide attempters
    corecore