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Abstract

Signal-to-interference-plus-noise-based power allocation in wireless ad hoc networks is inherently a nonconvex
optimization problem because of the global coupling induced by the co-channel interference. To tackle this
challenge, we first show that the globally optimal point lies on the boundary of the feasible region. This property is
utilized to transform the utility maximization problem into an equivalent max–min problem with more structure. By
using extended duality theory, penalty multipliers are introduced for penalizing the constraint violations, and the
minimum weighted utility maximization problem is then decomposed into subproblems for individual users to devise
a distributed stochastic power control algorithm, where each user stochastically adjusts its target utility to improve
the total utility by simulated annealing (SA). The proposed distributed power control algorithm can guarantee global
optimality at the cost of slower convergence due to SA involved in the global optimization. The geometric cooling
scheme with suitable choice of penalty parameters is then used to improve the convergence rate. Next, by
integrating the stochastic power control approach with the back-pressure algorithm, we develop a joint scheduling
and power allocation policy to stabilize the queueing systems under random packet traffic. Finally, we generalize the
above distributed power control algorithms to multicast communications, and show their global optimality for
multicast traffic.

Keywords: Distributed power control, Nonconvex optimization, Extended duality theory, Simulated annealing,
Queue stability, Unicast communications, Multicast communications

Introduction
The broadcast nature of wireless transmissions makes
wireless networks susceptible to interference, which dete-
riorates quality of service (QoS) provisioning. Power con-
trol is considered as a promising technique to mitigate
interference. One primary objective of power control is
to maximize the system utility that can achieve a variety
of fairness objectives among users [1-4]. However, maxi-
mizing the system utility, under the physical interference
model, often involves nonconvex optimization and it is
known to be NP-hard, due to the complicated coupling
among users through mutual interference effects [5].
Due to the nonconvex nature of the power control prob-

lem, it is challenging to find the globally optimal power
allocation in a distributed manner. Notably, the authors of
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[6-9] devised distributed power control algorithms to find
power allocations that can only satisfy the local optimality
conditions, but global optimality could not be guaran-
teed in general, except for some special convexifiable cases
(e.g., with strictly increasing log-concave utility func-
tions). Another thread of work applied game-theoretic
approaches to power control by treating it as a non-
cooperative game among transmitters [10,11]. However,
distributed solutions that converge to a Nash equilibrium
may be suboptimal in terms of maximizing the total sys-
tem utility. Different from these approaches, the authors
of [12] transformed the power control problem into a
DC (difference of convex functions) optimization prob-
lem [13]. Then, the global optimal solution can be solved
in a centralized manner with the branch-and-bound algo-
rithm. Recent study [14] proposed a globally optimal
power control scheme, named MAPEL, by exploiting the
monotonic nature of the underlying optimization prob-
lem. However, the complexity and the centralized nature
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of MAPEL hinder its applicability in practical scenarios,
and thus it can be treated rather as a benchmark for
performance evaluation in distributed networks.
To find the globally optimal power allocation in a

distributed setting, recent study [15] has proposed the
SEER algorithm based on Gibbs sampling [16], which can
approach the globally optimal solution in an asymptotic
sense when the control parameter in Gibbs sampling tends
to infinity. Notably, for each iteration in the SEER algo-
rithm, each user utilizes Gibbs sampling to compute its
transition probability distribution for updating its trans-
mission power, where the requirement for message pass-
ing and computing the transition probability distribution
in each iteration can be demanding when applied to ad
hoc communications without centralized control.
A challenging task in distributed power control in ad

hoc networks is to reduce the amount of message pass-
ing while preserving the global optimality. To tackle this
challenge, we first show that the globally optimal point
lies on the boundary of the feasible region. This property
is utilized to transform the utility maximization problem
into an equivalent max–min problem with more struc-
ture, which can be solved by combining recent advances
in extended duality theory (EDT) [17] with simulated
annealing (SA) [18]. Compared with the classical dual-
ity theory with nonzero duality gap for nonconvex opti-
mization problems, EDT can guarantee zero duality gap
between the primal and dual problems by utilizing non-
linear Lagrangian functions. This property allows for solv-
ing the nonconvex problem by its extended dual while
preserving the global optimality with distributed imple-
mentation. Furthermore, as will be shown in Section
“Power control for unicast communications”, for the sub-
problem of each individual user, the extended dual can
then be solved through stochastic search with SA. In
particular, we first transform the original utility maxi-
mization problem into an equivalent max–min problem.
This step is based on the key observation that in the case
with continuous and strictly increasing utility functions,
the globally optimal solution is always on the boundary
of the feasible (utility) region. Then, appealing to EDT
and SA, we develop a distributed stochastic power con-
trol (DSPC) algorithm that stochastically searches for the
optimal power allocation in the neighborhood of the fea-
sible region’s boundary, instead of bouncing around in the
entire feasible region.
Specifically, we first show that DSPC can achieve the

global optimality in the underlying nonconvex optimiza-
tion problem, although the convergence rate can be slow
(but this is clearly due to the slow convergence nature of
SA with logarithmic cooling schedule). Then, to improve
the convergence rate of DSPC, we propose an enhanced
DSPC (EDSPC) algorithm that employs the geometric
cooling schedule [19] and performs a careful selection

of penalty parameters. As a benchmark for performance
evaluation, we also develop a centralized algorithm to
search for the globally optimal solution over simplices that
cover the feasible region. The performance gain is further
verified by comparing our distributed algorithms with
MAPEL [14], SEER [15], and ADP [6] algorithms. Worth
noting is that the proposed DSPC and EDSPC algorithms
do not require any knowledge of channel gains, which is
typically needed in existing algorithms, and instead they
need only the standard feedback of signal-to-interference-
plus-noise (SINR) for adaptation.
Next, we integrate the proposed distributed power con-

trol approach with the back-pressure algorithm [20] and
devise a joint scheduling and power allocation policy for
improving the queue stability in the presence of dynamic
packet arrivals and departures. This policy fits into the
dynamic back-pressure and resource allocation frame-
work and enables distributed utility maximization under
stochastic packet traffic [21,22]. Then, we generalize the
study to consider multicast communications, where a sin-
gle transmission may simultaneously deliver packets to
multiple recipients [23,24]. Specifically, we extend DSPC
and EDSPC algorithms to multicast communications with
distributed implementation, and show that these algo-
rithms can also achieve the global optimality in terms of
jointly maximizing the minimum rates on bottleneck links
in different multicast groups.
The rest of the article is organized as follows. In the

following section, we first introduce the system model,
establish the equivalence between the utility maximiza-
tion problem and its max–min form, and then develop
both centralized and distributed algorithms for the max–
min problem. Next, building on these power control algo-
rithms, we develop in Section “Joint scheduling and power
control for stability of queueing systems” a joint schedul-
ing and power allocation policy to stabilize queueing sys-
tems. The generalization to multicast communications is
presented in Section “Power control for multicast com-
munications”. We conclude the article in “Conclusion”
Section.

Power control for unicast communications
Systemmodel
We consider an ad hoc wireless network with a set L =
{1, . . . , L} of links, where the channel is interference-
limited, and all L links treat interference as noise, as
illustrated in Figure 1. Such a model of communication is
readily applicable to cellular networks [1]. Each link con-
sists of a dedicated transmitter-receiver pair.a We denote
by hlk the fixed channel gain between user l’s transmit-
ter and user k’s receiver, and by pl the transmission power
of link l with Pmax

l being its maximum power constraint.
It follows that the received SINR for the lth user with a
matched filter receiver is given by
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Figure 1 Systemmodel.

γl(p) = hllpl
nl + ∑

k �=l
hklpk

, (1)

where p = (p1, . . . , pL) is a vector of the users’ transmis-
sion powers and nl is the noise power. Accordingly, the lth
user receives the utility Ul(γl), where Ul(·) is continuous
and strictly increasing. We assume that each user l’s utility
is zero when γl = 0, i.e., Ul(0) = 0. For ease of reference,
the key notation of this article is listed in Table 1.b

Table 1 Summary of the notations and definitions

Notation Definition

L Set of links

L Total number of links

hlk Channel gain from link l’s transmitter to link k’s receiver

H Link gain matrix

pl (in vector p) Transmission power of link l

nl (in vector n) Noise power for link l

γl SINR of link l

γl(·) SINR function of link l

Ul(·) Utility function of link l

xl (in vector x) Ratio of link l’s utility to the total network utility

rl (in vector r) Transmission rate of link l

rl(·) Transmission rate function of link l

α, β Penalty multipliers

Network utility maximization
We seek to find the optimal power allocation p∗ that max-
imizes the overall system utility subject to the individual
power constraints, given by the following optimization
problemc:

maximize
∑
l∈L

Ul(γl(p))

subject to 0 ≤ pl ≤ Pmax
l ,∀l ∈ L

variables {p}.
(2)

In general, (2) is a nonconvex optimization problem.d
In particular, if the utility function is the Shannon rate
achievable over Gaussian flat fading channels, namely
Ul(γl(p)) = wl log(1 + γl(p)), where wl > 0 is a weight
associated with user l, (2) boils down to the weighted sum
rate maximization problem, which is known to be non-
convex and NP-hard [5]. Note that the weights in (2) can
serve as the fairness measures [25] for different scenar-
ios. In particular, in queueing systems, packet queues for
arrival rates within the stability region can be stabilized
by solving this weighted sum rate maximization prob-
lem, where the instantaneous queue lengths are chosen
as the weights. In Section “Joint scheduling and power
control for stability of queueing systems”, we will discuss
how to stabilize the packet queues by integrating our dis-
tributed power control algorithms with the back-pressure
algorithm.
Let F denote the feasible utility region, where for each

point U = (U1, . . . ,UL) in F , there exists a power vec-
tor p such that Ul = Ul(γl(p)) for all l ∈ L. The feasible
utility region F is nonconvex, and in general, finding the
globally optimal solution to (2) in F is challenging. In the
following example, we illustrate the geometry of F for the
utility functionUl(γl(p)) = wl log(1+ γl(p)) and evaluate
the solutions to (2) given by some existing power control
approaches discussed in Section “Introduction”.

Example. For the case with two links, Figure 2 illustrates
the nonconvex feasible utility region F for different sys-
tem parameters. We compare the performance of the
existing approaches [3,6,14,15] in Table 2.

Remarks. The solutions to (2) given by the authors of
[3,6,14] are either distributed but suboptimal or optimal
but centralized. In particular, Chiang et al. [3] solve (2)
by using geometric programming (GP) under the high-
SINR assumption, which yields a suboptimal solution to
(2) when this assumption does not hold (e.g., this is the
case in the example above). The ADP algorithm [6] can
guarantee only local optimalitye in a distributed man-
ner. The MAPEL algorithm [14] can achieve the globally
optimal solutions but it is centralized with high com-
putational complexity. Compared with these algorithms,
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Figure 2 The feasible utility regionF . Case (I): the channel gains
are given by h11 = 0.73, h12 = 0.04, h21 = 0.03, and h22 = 0.89, and
the maximum power are Pmax

1 = 20, Pmax
2 = 100; Case (II): the

channel gains are given by h11 = 0.30, h12 = 0.50, h21 = 0.03, and
h22 = 0.80, and the maximum power are Pmax

1 = 1, Pmax
2 = 2. In both

cases, the noise power is 0.1 for each link, and the weights are
w1 = 0.57, w2 = 0.43.

the SEER algorithm [15] can guarantee global optimality
in a distributed manner but message passing needed in
each iteration can be demanding, i.e., each link needs the
knowledge of the channel gains, the receiver SINR and the
signal power of all the other links. It is worth noting that
the performance of SEER hinges heavily on the control
parameter that can be challenging to choose on the fly.

From network utility maximization to minimumweighted
utility maximization
In order to devise low-complexity distributed algorithms
that can guarantee global optimality, we first study the
basic properties for the solutions to (2), before transform-
ing (2) into a more structured max–min problem.

Lemma1. The optimal solution to (2) is on the boundary
of the feasible utility region F .

Table 2 The performance of the existing approaches for
Case I and II

Approach
Case I Case II

Power Sum rate Power Sum rate

GP [20, 7.68] 3.02 [1, 0.61] 0.98

ADP [20, 6.46] 3.10 [1, 2] 1.16

MAPEL [20, 6.79] 3.10 [0, 2] 1.22

SEER [20, 6.90] 3.10 [0, 2] 1.22

Proof. Let U∗ denote a globally optimal solution to (2)
over F , and γ ∗ denote the corresponding SINR that sup-
portsU∗. SinceUl(·) is continuous and strictly increasing,
proving that U∗ is on the boundary of F is equivalent to
showing that γ ∗ is on the boundary of the feasible SINR
region. Suppose that γ ∗ is not on the boundary of the fea-
sible SINR region, which indicates that there exists some
point γ̂ such that γ̂l ≥ γ ∗

l for all l ∈ L and γ̂l′ > γ ∗
l′ for

some l′ ∈ L. Since Ul(·) for any l ∈ L is strictly increas-
ing in γl, we have Ul(γ̂l) ≥ Ul(γ

∗
l ) for all l ∈ L and

Ul(γ̂l′) > Ul(γ
∗
l′ ) for some l′ ∈ L, which contradicts the

fact that γ ∗ is a globally optimal solution. Hence, Lemma 1
follows.

Based on Lemma 1, if we can characterize the boundary
of F , then it is possible to solve (2) efficiently. Thus moti-
vated, we first establish, by introducing a “contribution
weight” for each user, the equivalence between (2) and the
minimum weighted utility maximization problem.

Lemma 2. Problem (2) is equivalent to the following
minimum weighted utility maximization:

maximize min
l∈L

Ul(γl(p))
xl

subject to 0 ≤ pl ≤ Pmax
l ,∀l ∈ L

0 ≤ xl ≤ 1,∀l ∈ L∑
l∈L

xl = 1

variables {p, x}.

(3)

Proof. Let t = ∑
l∈L

Ul(γl(p)) denote the total utility. Since

Ul(·) is nonnegative, we define xl ∈[ 0, 1] as a ratio for the
contribution of user l’s utility to t. Therefore, Ul(γl(p)) =
txl and

∑
l∈L

xl = 1. Then (2) can be rewritten as

maximize t
subject to t = Ul(γl(p))

xl ,∀l ∈ L
0 ≤ pl ≤ Pmax

l ,∀l ∈ L
0 ≤ xl ≤ 1,∀l ∈ L
0 ≤ t,

∑
l∈L

xl = 1

variables {p, x, t}.

(4)

In order tomaximize t, it suffices then to relax t = Ul(γl(p))
xl

in (4) as t ≤ Ul(γl(p))
xl , ∀l ∈ L, which is equivalent to

t ≤ min
l∈L

Ul(γl(p))
xl . Therefore, (4) can be treated as the

hypograph form of (3), i.e., (4) and (3) are equivalent [26],
thereby concluding the proof.

By transforming (2) to this more structured max–min
problem (3), the problem is reduced to finding a globally
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optimal x∗, given which we can efficiently obtain a globally
optimal solution, i.e., the tangent point of the hyperplane
and F , as illustrated in Figure 3. Intuitively speaking, x
represents a search direction. Once we find the best search
direction x∗, p∗ can be obtained efficiently by searching
along the direction of x∗. Actually, for given x, (3) is quasi-
convex.f By introducing an auxiliary variable t, we obtain
the following equivalent formulation:

maximize t
subject to U−1

l (txl)(nl + ∑
k �=l

hklpk) ≤ hllpl

0 ≤ pl ≤ Pmax
l ,∀l ∈ L, 0 ≤ t

variables {p, t},
(5)

which can be solved in polynomial time through binary
search on t [26]. However, the optimal search direction
x∗ is difficult to find due to the nonconvex nature of the
problem. In the following section, we study how to find
the globally optimal search direction x∗.

Centralized versus distributed algorithms
In this section, we study algorithms achieving global opti-
mality for (3). First, we propose a centralized algorithm
for (3), which will serve as a benchmark for performance
comparison. Then, by using EDT and SA, we propose a
distributed algorithm, DSPC, for the problem (3). Build-
ing on this, we propose an EDSPC algorithm to improve
the convergence rate of DSPC.

A centralized algorithm
Based on Lemmas 1 and 2, we develop a centralized algo-
rithm (Algorithm 1) to solve the max–min optimization
problem (3) under consideration. Roughly speaking, by
dividing the simplex S = {x| ∑l∈L xl = 1, 0 ≤ xl ≤ 1,∀l ∈
L} into many small simplices, the algorithm can find the
optimal point on the boundary of F . Figure 4 illustrates

0

2U

1U

*
ll L

U t

* * *
1 2,x xx

Figure 3 An illustration of the max–min problem for the case
with two links.

If S

cv
S

1S 2S

Figure 4 An illustration of the simplex cutting for the case with
three links.

how the simplex cutting is performed for the case with
three links. Compared with the MAPEL algorithm [14],
Algorithm 1 directly computes the points on the bound-
ary, instead of constructing a series of polyblocks to
approximate the boundary of the feasible region.

Algorithm 1
Initialization: Choose the approximation factor ε > 0,
and construct the initial simplex S with the vertex set
V = {v1, . . . , vL}, where vl = el and el is the lth unit
coordinate vector. Let vc = 1

L
∑

l∈L vl be the center of S.
Compute p∗ by solving (5) at the point x = vc. Denote
δ(S) = maxv∈V |vc − v| as the diameter of S .
Repeat

1. Divide each simplex Si by using bisection method,
which chooses the midpoint of one of the longest
edges of the simplex Si, i.e., vm = 1

2 (vr + vs), where
vr and vs are the end points of a longest edge of the
simplex. In this case, the simplex Si is subdivided
into two simplices Si1 and Si2 .

2. For each new simplex Sij , compute the diameter
δ(Sij) and p∗ by solving (5) at x given by the center
point of the simplex.

3. Find the current best solution to (3) and the maximal
diameter δm in these new subdivided simplices.

Until δm < ε.

Proposition 1. Algorithm 1 converges monotonically to
the globally optimal solution to (3) as the approximation
factor ε approaches zero.

Proof. For given ε, Algorithm 1 divides the simplex S =
{x| ∑l∈L xl = 1, 0 ≤ xl ≤ 1,∀l ∈ L} until the maxi-
mal diameter of the subdivided simplices δm is less than ε.



Yang et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:231 Page 6 of 14
http://jwcn.eurasipjournals.com/content/2012/1/231

Let d(ε) denote the maximum distance between the opti-
mal solution x∗ and the center point of the simplex that
contains x∗. Obviously, d(ε) is bounded by δm. Since
δm decreases with the decreasing of ε, therefore d(ε)

decreases monotonically with the decreasing of ε, i.e., the
solution given by Algorithm 1 monotonically converges
to x∗. As ε approaches zero, Algorithm 1 exhaustively
searches every point in the simplex S , thereby concluding
the proof.

Remarks. Algorithm 1 can be used to obtain an ε-optimal
solution with |x − x∗| ≤ ε. That is to say, by control-
ling ε, one can strike a balance between the optimality
and the computation time. Since finding the globally opti-
mal solution requires centralized implementation, Algo-
rithm 1 will be used only as a benchmark for performance
evaluation of distributed algorithms.

DSPC algorithm
Next, we devise a DSPC algorithm based on EDT [17]
and SA [18]. Compared to the classical duality theory with
nonzero duality gap for nonconvex optimization prob-
lems, EDT can guarantee zero duality gap between the pri-
mal and dual problems by utilizing nonlinear Lagrangian
functions. This property allows for solving the nonconvex
problem by its extended dual while preserving the global
optimality in distributed implementation. To this end, we
first introduce auxiliary variables and use EDT to trans-
form (3) with the auxiliary variables into an unconstrained
problem. Then, we solve the unconstrained problem by
using the SA mechanism. Specifically, we define tl =
Ul(γl(p))

xl and rewrite (3) as

minimize −min
l∈L

tl
subject to tlxl ≤ Ul(γl(p)),∀l ∈ L∑

l∈L
xl = 1

0 ≤ pl ≤ Pmax
l ,∀l ∈ L

0 ≤ tl, 0 ≤ xl ≤ 1,∀l ∈ L
variables {p, x, t}.

(6)

Next, we use EDT to write the Lagrangian function for
(6) as

L(p, x, t,α,β) = − min
l∈L

tl + α|
∑
l∈L

xl − 1|

+
∑
l∈L

βl(tlxl − Ul(γl(p)))+, (7)

where (y)+ = max(0, y), and α ∈ R and β ∈ R
L are

the penalty multipliers for penalizing the constraint vio-
lations. Based on EDT [17], there exist finite α∗ ≥ 0 and
β∗
l ≥ 0, for all l ∈ L, such that, for any α > α∗ and

βl > β∗
l , ∀ l ∈ L, the solution to (7) is the same as (6).

Note that (7) does not include the constraints of pl, xl, and
tl for each user, and there will be no constraint violation
when each user updates these variables locally. Therefore,
the minimization of (7) with respect to the primal vari-
ables (p, x, and t) can be carried out individually by each
user in a distributed fashion.
The next key step is to perform a stochastic local search

by each user based on SA. Let tl, xl, and pl denote the pri-
mal values of the lth user, and t′l and x′

l denote the new
values randomly chosen by the lth user. Accordingly, t′lx

′
l

can be treated as a new target utility for the lth user. To
achieve this target utility, the lth user updates p′

l by

p′
l = min

(
U−1
l (t′lx

′
l)

γl
pl,Pmax

l

)
, (8)

where γl is the current SINR measured at the lth user’s
receiver. Note that (8) does not need any information
of channel gains, except the feedback of SINR γl. Since
(8) corresponds to the distributed power control algo-
rithm of standard form as described in [27],g it converges
geometrically fast to the target utility. Thus, we assume
that each user l updates pl at a faster time-scale than
tl and xl such that pl always converges before the next
update of tl and xl. Next, we use SA to update tl and
xl in a stochastic operation. By using the analogy with
annealing in metallurgy, SA was proposed in [18] to
mimic the behavior of the microscopic constituents in
heating and controlled cooling of a material. By allow-
ing occasional uphill moves, SA is able to escape from
the local optimal points. In particular, let � denote
the difference between L(pl, xl, tl|p−l, x−l, t−l,α,β) and
L(p′

l, x
′
l, t

′
l|p′

−l, x−l, t−l,α,β), where y−l is the vector y
without the lth user’s variable. If � ≥ 0, i.e., t′l , x

′
l and p′

l
reduce Lagrangian (7), then they are accepted with prob-
ability 1; otherwise, they are accepted with probability
exp

(
�
T

)
, where T is a control parameter and sometimes

it is called temperature. Note that, as T decreases, the
acceptance of uphill move becomes less and less probable,
and therefore a fine-grained search is needed. It has been
shown that, as T approaches 0 according to a logarithmic
cooling schedule, SA converges to a globally optimal point
[16,19]. To compute � locally by each user l, user l needs
to broadcast the terms tl, xl and βl(tlxl − Ul(γl(p)))+,
whenever any of these terms changes.
Note that the target utility tlxl may not be feasible, i.e.,

the target utility cannot be achieved even though the user
transmits at the maximum power. In this case, it can be
shown that the power of those users with feasible tar-
get utilities will converge to a feasible solution, whereas
the other users that cannot achieve the target utility will
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continue to transmit at maximum power [1]. If some tar-
get utility is not feasible as T tends to 0, based on EDT, the
current values of α and β do not satisfy α > α∗ or βl > β∗

l
for all l ∈ L. Therefore, each user l also needs to update α

and βl. In particular, if any constraint is violated, α and βl
are updated as follows:

α ← α + σ |
∑
l∈L

xl − 1|,

βl ← βl + 	l(tlxl − Ul(γl))
+, ∀l ∈ L, (9)

where σ and 	l are used to control the rate of updating α

and βl. A detailed description of DSPC algorithm is given
in Algorithm 2.

Remarks:

(1) In Algorithm 2, each user randomly picks
t′l ∈[Umax

l ,Umax
tot ], where Umax

l denotes the
maximum utility of the user l when the user l
transmits at the maximum power while the other
users do not transmit, and Umax

tot = ∑
l∈L Umax

l . Note
that Umax

l can be computed by each user locally.
Further, we assume that each user broadcasts Umax

l
before running the algorithm so that Umax

tot is also
known by each user.

(2) In practice, after initialization, α and βl increase in
proportion to the violation of the corresponding
constraint, which may lead to excessively large
penalty values. Since it is beneficial to periodically
scale down the penalty values to ease the
unconstrained optimization, α and βl are scaled
down by multiplying with a random value (it can be
chosen between 0.7 and 0.95 according to [17]), if the
penalty decrease condition is satisfied, i.e., the
maximum violation of constraints is not decreased
after consecutively running Step 1 in Algorithm 2
several times, e.g., five times in [17].

(3) In Algorithm 2, each user requires the knowledge of T
and time epochs {τ1, τ2, . . .} to update tl and xl, which
can be determined and informed to each user offline.

Algorithm 2 DSPC
Initialization: Choose ε > 0. Let α = 0, βl = 0, ∀l ∈ L,
and randomly choose p, x and t.
Step 1: update primal variables
Set T = T0, and select a sequence of time epochs
{τ1, τ2, . . .} in continuous time.

Repeat for each user l
1. Randomly pick t′l ∈[Umax

l ,Umax
tot ] and x′

l ∈[ 0, 1], and
update p′

l according to (8).
2. Keep sensing the change of βl(tlxl − Ul(γl(p)))+

broadcast by other users.

3. Compute �, and accept t′l , x
′
l, and p′

l with probability
1, if � ≥ 0, or with probability exp(�

T ), otherwise.
4. Broadcast t′l and x′

l, if t
′
l and x′

l are updated.
5. For each time epoch τi, update T = T0/ log(i + 1).
Until T < ε.

Step 2: update penalty variables
For each user l,
1. Update α and βl according to (9), and scale down α

and βl, if the penalty decrease condition is satisfied.
2. Go to Step 1 until no constraint is violated.

Proposition 2. The DSPC algorithm (Algorithm 2) con-
verges almost surely to a globally optimal solution to (3), as
temperature T in SA decreases to zero.

Proof. To show that Algorithm 2 converges almost surely
to a globally optimal solution to (3), we only need to show
that when α > α∗ and βl > β∗

l for all l ∈ L, Algo-
rithm 2 can converge almost surely to a globally optimal
solution to (6), since (3) is equivalent to (6), and if the
solution does not satisfy the constraints of (6), α and βl
will increase in proportion to the violation of the corre-
sponding constraint. Since Algorithm 2 uses SA with the
logarithmic cooling schedule, based on [16,19] it can con-
verge almost surely to a globally optimal solution to (7),
which is also a globally optimal solution to (6) based on
EDT when α > α∗ and βl > β∗

l for all l ∈ L [17]. Hence,
Proposition 2 follows.

Remarks. The DSPC algorithm can guarantee global
optimality in a distributed manner without the need of
channel information. In particular, it needs the informa-
tion of tl and xl, and can adapt to channel variations by
utilizing the SINR feedback. However, the convergence
rate of DSPC is slow due to the use of logarithmic cooling
schedule.

EDSPC algorithm
It can be seen from Algorithm 2 that it is critical to
find the optimal penalty variables α and β for computing
(7). Moreover, a logarithmic cooling schedule is used to
ensure convergence to a global optimum. To improve the
convergence rate, we propose next an EDSPC algorithm
by empirically choosing the initial penalty values α0 and
β0 and employing a geometric cooling schedule [18], which
reduces the temperature T in SA by T = ξT , 0 < ξ < 1,
at each time epoch. Compared with the logarithmic cool-
ing schedule, T converges to 0 much faster under the
geometric cooling schedule, which in turn improves the
convergence rate beyond DSPC. The resulting solution is
given in Algorithm 3.
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We note that although EDSPC converges much faster
than DSPC, it may yield only near-optimal solutions.
Based on EDT, we choose α0 > α∗ and β0l > β∗

l , ∀ l ∈ L,
to satisfy the optimality conditions for penalty variables.
Obviously, by choosing large α0 and β0l, these conditions
can be always satisfied. Nevertheless, very large penalties
introduce heavy costs for constraint violations such that
EDSPC may end up with a feasible but suboptimal solu-
tion. Therefore, the selection of initial penalty values plays
a critical role in the performance of EDSPC and deserves
more attention in future work. In practice, we can choose
the initial penalties based on the maximum value of the
constraint that is associated with each of the penalty vari-
ables. This choice performs well in the simulations. For
example, we can choose β0l = Umax

l for the constraint
tlxl ≤ Ul(γl(p)).

Algorithm 3 EDSPC
Initialization: Choose ε > 0. Let α = α0, βl = β0l,
∀l ∈ L, and randomly choose p, x and t.
Set T = T0, and select a sequence of time epochs
{τ1, τ2, . . .} in continuous time.

Repeat for each user l
1. Randomly pick t′l ∈[Umax

l ,Umax
tot ] and x′

l ∈[ 0, 1], and
update p′

l according to (8).
2. Keep sensing the change of βl(tlxl − Ul(γl(p)))+

broadcast by other users.
3. Compute �, and accept t′l , x

′
l, and p′

l with probability
1, if � ≥ 0, or with probability exp(�

T ), otherwise.
4. Broadcast t′l and x′

l, if t
′
l and x′

l are updated.
5. For each time epoch τi, update T = ξT .

Until T < ε.

Performance evaluation
In this section, we evaluate the utility and convergence
performance of Algorithms 2 and 3 (DSPCh and EDSPC).
We consider a wireless network with six links randomly
distributed on a 10-by-10m2 square area. The channel
gains hlk are equal to d−4

lk , where dlk represents the dis-
tance between the transmitter of user l and the receiver of
user k. We assume Ul(γl(p)) = log(1 + γl(p)), Pmax

l = 1
and nl = 10−4 for all l ∈ L, and consider one randomly
generated realization of channel gains given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3318 0.0049 0.0141 0.0021 0.0016 0.0007
0.0031 0.9554 0.0063 0.0140 0.0012 0.0025
0.0155 0.0042 0.6166 0.0046 0.0108 0.0018
0.0017 0.2188 0.0340 0.6754 0.0062 0.0215
0.0020 0.0017 0.2216 0.0042 0.2955 0.0028
0.0007 0.0079 0.0254 0.2553 0.0404 0.3025

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Figure 5 shows how the total utility in the EDSPC algo-
rithm converges over time, when we choose all the initial

Figure 5 Convergence performance of DSPC, EDSPC, SEER, and
ADP.

penalty values equal to 10. Also, we choose ξ = 0.9, ρ = 1,
and 	 = 1, and use Algorithm 1 as a benchmark to eval-
uate the optimal performance. As shown in Figure 5, the
EDSPC algorithm approaches the optimal utility, when
the initial penalty values are carefully chosen. Moreover,
the convergence rate of the EDSPC algorithm is much
faster than DSPC, since DSPC continues updating the
penalty values even after the optimal solution is found for
the current penalty values. Figure 6 illustrates the average
performance (with confidence interval) of DSPC, EDSPC,
SEER, andADP under 100 random initializations, with the
same system parameters as used in Figure 5. As shown in
Figure 6, both DSPC and EDSPC are robust against the
variations of initial values.
Figures 5 and 6 compare the proposed algorithms with

the SEER and ADP. As mentioned in Section “Introduc-
tion”, ADP can only guarantee local optimality. There-
fore, for nonconvex problems (e.g., in this example), ADP
may converge to a suboptimal solution. As noted in [15],
the performance of SEER heavily hinges on the control
parameter that can be challenging to choose in online

DSPC EDSPC SEER ADP
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Figure 6 Comparison of the average utility performance (with
confidence interval) of DSPC, EDSPC, SEER, and ADP.
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operation. In contrast, DSPC can approach the glob-
ally optimal solution regardless of the initial parameter
selection, but the convergence rate may be slower. Fur-
thermore, EDSPC improves the convergence rate, but in
this case the initial penalty values would impact how close
it can approach the optimal point. In terms of message
passing, our algorithms do not require individual links
to know the channel gains (including its own channel
gain), the receiver SINR of the other links and the signal
power of the other links, which are all needed in the SEER
algorithm.

Joint scheduling and power control for stability of
queueing systems
In Section “Power control for unicast communications”,
we studied the distributed power allocation, by using
DSPC and EDSPC, for utility maximization in the sat-
urated case with uninterrupted packet traffic. In this
section, we generalize the study by considering a queue-
ing system with dynamic packet arrivals and departures.
Specifically, we develop a joint scheduling and power allo-
cation policy to stabilize packet queues by integrating
our power control algorithms with the celebrated back-
pressure algorithm [20].

Stability region and throughput optimal power allocation
policy
Consider the same wireless network model with L links
as in Section “Power control for unicast communications”.
We assume that there are S classes of users in the sys-
tem, and that the traffic brought by users of class s follows
{Asl(t)}∞t=1, which are i.i.d. sequences of random variables
for all l = 1, . . . , L and s = 1, . . . , S, where Asl(t) denotes
the amount of traffic generated by users of class s that
enters the link l in slot t. We assume that the second
moments of the arrival process {Asl(t)}∞t=1 are finite. Let
Qs
T(l)(t) and Qs

R(l)(t) denote the current backlog in the
queue of class s in slot t on the transmitter and receiver
sides of link l, respectively. The queue length Qs

T(l)(t)
evolves over time as

Qs
T(l)(t + 1) =max(Qs

T(l)(t) − rsl (t), 0) + Asl(t)

+
∑

{m|T(l)=R(m),m∈L}
rsm(t), (10)

where rsl (t) denotes the transmission rate of link l for users
of class s. The third term in (10) denotes the traffic from
the other links. The queue length process {Qs

T(l)(t)}∞t=1
forms a Markov chain.
Let ψs denote the first moment of {Asl(t)}∞t=1, i.e., the

load brought by users of class s. As is standard [20,21,28],
the stability region is defined as follows.

Definition 1. The stability region � is the closure of the
set of all {ψs}Ss=1 for which there exists some feasible power
allocation policy under which the system is stable, i.e.,
� = ⋃

p∈P �(p), where �(p) = {{ψs}Ss=1|
∑S

s=1 Eslψs <

rl(p),∀l}, P denotes the set of feasible power allocation,
rl(p) denotes the rate of link l under power allocation p,
and Esl = 1 is the indicator that the path of users of class s
uses link l, and Esl = 0, otherwise.

For the sake of comparison, the throughput regioni F of
the corresponding saturated case is defined as the set of
all feasible link rates, i.e., F = {r|rl = rl(p),p ∈ P}. In
general, the throughput region F may be different from
the stability region �, except for some special cases (e.g.,
in slotted ALOHA systems the throughput region and the
stability region are the same [29] for two links and in a
multiple-access channel the information theoretic capac-
ity region is equivalent to its stability region under specific
feedback assumptions [30]).
The queueing system is stable if the arrival rates of

packet queues are less than the service rates such that the
queue lengths do not grow to infinity [31]. In order to
stabilize packet queues, it is critical to find the optimal
scheduling and power allocation policy that maximizes
the weighted sum rate given by (11). By integrating our
power control algorithms with the back-pressure algo-
rithm, we propose a joint scheduling and power allocation
policy presented in Algorithm 4 to stabilize the queueing
system.

Proposition 3. The joint scheduling and power allocation
policy (Algorithm 4) can stabilize the system such that
lim supt→∞ 1

t
∑t−1

τ=0
∑

l,s E{Qs
l(τ )} < ∞, when the traffic

load {ψs}Ss=1 is strictly interior to the stability region�, i.e.,
there exists some ε > 0 such that {ψs + ε}Ss=1 ∈ �.

The proof is similar to that in [21,32], and is omitted for
brevity.
Note that Algorithm 4 can be viewed as a dynamic

back-pressure and resource allocation policy [32], crafted
towards solving the weighted sum rate maximization
problem (11). Specifically, by using the DSPC algorithm,
Algorithm 4 can be implemented distributively to find the
globally optimal resource allocation. We should caution
that EDSPC can be applied to improve the convergence
rate of Stage 2 in Algorithm 4 but it may render a subop-
timal schedule (i.e., it can not stabilize all possible {ψs}Ss=1
within �), due to the fact that EDSPCmay not always find
the global optimal power allocation.
To reduce the complexity, we can consider a policy that

computes (11) periodically every few slots, and it can be
shown that this policy can also stabilize the system, when
{ψs}Ss=1 is strictly interior to the stability region � [33,34].
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Algorithm 4 Joint scheduling and power allocation policy
Stage 1: For each link l, select a link weight according
to wl(t) = max

s=1,...,S
Ds
l(t), where the difference of queue

lengths of class s is Ds
l(t) = max(Qs

T(l)(t) − Qs
R(l)(t), 0),

if the receiver of link l is not the destination of class s’s
traffic, and Ds

l(t) = Qs
T(l), otherwise.

Stage 2: Compute the optimal power allocation p∗ in
each slot t by solving the following problem with DSPC
algorithm

p∗ = argmax
p

L∑
l=1

wl(t)rl(p). (11)

Thus, the transmission rate of link l in slot t is given by
rl(p∗) = log(1 + γl(p∗)).
Stage 3: Let s∗l = arg max

s=1,...,S
Dsl(t) denote the class sched-

uled in slot t; if multiple classes satisfy this condition, then
s∗l is randomly chosen as one of these classes. Then, sched-
ule these classes according to the solution given by Stage 2.

Performance evaluation
In this section, we present numerical results to illustrate
the use of Algorithm 4 for stabilizing a queueing system.
We consider a one-hop network (i.e., E = {Esl} is the iden-
tity matrix) with two users (classes), where the channel
gains are h11 = 0.3, h12 = 0.5, h21 = 0.03, and h22 = 0.8,
and the noise power is 0.1 for each link. The maximum
transmission power is set to 1 and 2 for links 1 and 2,
respectively. Besides, we assume that the users of class s
arrive at the network according to a Poisson process with
rate λs, and that the size of packet batch for users of class
s follows an exponential distribution with mean νs. The
load brought by users of class s is then ψs = λsνs. Figure 7

Figure 7 Comparison of the stability region and the throughput
region.

shows the stability region � and compares it with the
throughput region F of the corresponding saturated case.
The stability region follows from the union of link rates
that are conditioned on whether the other link is back-
logged or not [29,30]. First, we derive the stability region
for the given power allocation. Then, we vary power allo-
cation in the feasible region, and by taking the envelope of
these regions, we obtain the overall stability region shown
in Figure 7. However, different from the previous cases,
where the throughput region is the same as the stability
region, e.g., in a slotted ALOHA system with two links
[29] and in a multiple-access channel [30], the through-
put region F under the SINR model is strictly smaller
than the stability region (due to the underlying noncon-
vex optimization problem), as observed from Figure 7,
which is the convex hull of F , i.e., Co(F), achievable by
timesharing across different transmission modes.j
Then, we vary the arrival rate λ and the average batch

size ν to change the traffic intensity ψ = λν. Assuming
that the arrival rate and the average batch size of each user
are the same, we compare in Figure 8 the sample paths
of each user’s queue length for ψ = 1 (λ = 1, ν = 1)
with ψ = 1.5 (λ = 1.5, ν = 1). When ψ = 1, which
falls in the stability region shown in Figure 7, the system
is stabilized by using Algorithm 4. On the other hand, the
system becomes unstable when ψ = 1.5, which is outside
the stability region. Figure 9 illustrates the average delay
of the system as a function of the arrival rates. The delay
is finite for small loads and grows unbounded when the
loads are outside the stability region.

Power control for multicast communications
Due to wireless multicast advantage [23], multicasting
enables efficient data delivery to multiple recipients with
a single transmission. In this section, we extend the DSPC

Figure 8 Comparison of sample paths of a user’s queue length
for different traffic loads.
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Figure 9 Average delay of the system versus system loads .

algorithms in Section “Power control for unicast commu-
nications” to support multicast communications.

Systemmodel
Beyond the model described in Section “Power control
for unicast communications”, we consider that each user
l has one transmitter and a set Ml of receivers. The cor-
responding transmission rate, rl, is determined by the
bottleneck link among these transmitter–receiver pairs,
i.e., rl = min

m∈Ml
rlm, where rlm denotes the link rate between

the transmitter of user l and its receiverm, and it is calcu-
lated from the Shannon rate log(1+ γlm(p)) for Gaussian,
flat fading channels. Here, we do not consider the general
broadcast capacity region but rather focus on maximizing
the bottleneck link rates.

Network utility maximization
We seek to find the optimal power allocation p∗ that
maximizes the overall system utility subject to the power
constraints in multicast communications, as follows:

maximize
∑
l∈L

Ul(rl)

subject to rl = min
m∈Ml

rlm,∀ l ∈ L
rlm = log(1 + γlm(p)),∀ l ∈ L,m ∈ Ml
0 ≤ pl ≤ Pmax

l ,∀l ∈ L
variables {p, {rl}, {rlm}}.

(12)

Similar to (2), (12) is nonconvex due to the complicated
interference coupling between individual links. Different
from the techniques used in Section “Power control for
unicast communications”, we relax rl = min

m∈Ml
rlm in (12)

as rl ≤ log(1 + γlm(p)),∀ l ∈ L,m ∈ Ml, in order to

devise distributed algorithms solving (12). Thus, (12) can
be rewritten as

maximize
∑
l∈L

Ul(rl)

subject to rl ≤ log(1 + γlm(p)),∀ l ∈ L,m ∈ Ml
0 ≤ pl ≤ Pmax

l ,∀l ∈ L
variables {p, r}.

(13)

Distributed global optimization algorithms
We develop next distributed algorithms that can find the
globally optimal solutions to (13) based on EDT and SA.
To this end, we first rewrite the optimization problem
(13) as

minimize − ∑
l∈L

Ul(rl)

subject to rl ≤ log(1 + γlm(p)),∀ l ∈ L,m ∈ Ml
0 ≤ pl ≤ Pmax

l ,∀l ∈ L
variables {p, r}.

(14)

Next, we use EDT to write the Lagrangian function for
(14) as

L(p, r, {αlm}) = −
∑
l∈L

Ul(rl)

+
∑

l∈L,m∈Ml

αlm(rl − log(1 + γlm(p)))+,

(15)

where αlm ∈ R are the penalty multipliers. From EDT,
there exist finite α∗

lm ≥ 0 for all l ∈ L,m ∈ Ml such that,
for any αlm > α∗

lm, ∀ l ∈ L,m ∈ Ml, the solution to (15) is
the same as (14) [17]. Note that (15) does not include the
constraint of pl for each user. Therefore, there will be no
constraint violation when each user updates the transmis-
sion power locally, while minimizing (15) in a distributed
operation.
As in Section “Power control for unicast communica-

tions”, the key step is to let each user perform a local
stochastic search based on SA. Let rl and pl denote the
primal values of the lth user, and r′l denote the new value
randomly chosen by the lth user, which is treated as a new
target transmission rate for the lth user. Different from the
unicast communications case, the lth user updates p′

l by

p′
l = min

⎛
⎝ er

′
l − 1

min
m∈Ml

γlm
pl,Pmax

l

⎞
⎠ , (16)

where γlm is the current SINR measured at the receiver
m of user l. Note that (16) does not need any informa-
tion of the channel gains, except the feedback of SINR
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γlm from the intended receivers. Since (16) is in standard
form as described in [27], it converges geometrically fast
to the target transmission rate. The steps to update rl and
αlm are similar to DSPC Algorithm 2 in Section “Power
control for unicast communications”. Note that the tar-
get transmission rate rl may not be feasible, i.e., the target
utility cannot be achieved even though the user trans-
mits at the maximum power. In this case, it can be shown
that the power of those users with feasible target trans-
mission rates will converge to a feasible solution, whereas
the other users that cannot achieve the target transmis-
sion rate will continue to transmit at maximum power [1].
A detailed description of DSPC algorithm for multicast
communications is presented in Algorithm 5.

Remarks. In Algorithm 5, each user randomly picks r′l ∈
[ 0, rmax

l ], where rmax
l = min

m∈Ml
rmax
lm , and rmax

lm is the max-

imum link rate between the transmitter of the user l and
its receiver m, when the user l transmits at the maximum
power while the other users do not transmit.

Proposition 4. The DSPC algorithm for multicast com-
munications (Algorithm 5) converges almost surely to a
globally optimal solution to (13), as temperature T in SA
approaches zero.

Proof. The proof is based on EDT and SA arguments, and
follows similar steps used in the proof of Proposition 2,
and it is omitted here for brevity.

To improve the convergence rate, we also propose an
enhanced algorithm for Algorithm 5 by empirically choos-
ing the initial penalty values and employing a geometric
cooling schedule. The resulting algorithm is given in Algo-
rithm 6. Similar to the unicast case, Algorithms 5 and 6
do not need any knowledge of channel information (or the
bottleneck link) and they are dynamically updated by the
SINR feedback from the intended receivers.

Algorithm 5 DSPC for multicast communications
Initialization: Choose ε > 0. Let αlm = 0, ∀ l ∈ L,m ∈
Ml and randomly choose r and p.

Step 1: update primal variables
Set T = T0, and select a sequence of time epochs
{τ1, τ2, . . .} in continuous time.

Repeat for each user l
1. Randomly pick r′l ∈[ 0, rmax

l ], and update p′
l according

to (16).
2. Keep sensing the change of∑

m∈Ml

αlm(rl − log(1 + γlm(p)))+ broadcast by other

users.

3. Let � be the difference between L(p, rl|r−l, {αlm})
and L(p′, r′l|r−l, {αlm}), and accept r′l and p′

l with
probability 1, if � ≥ 0, or with probability exp(�

T ),
otherwise.

4. Broadcast Ul(r′l), if r
′
l is accepted.

5. For each time epoch τi, update T = T0/ log(i + 1).
Until T < ε.

Step 2: update penalty variables
For each user l,
1. Update αlm ← αlm + 	lm(rl − log(1 + γlm(p)))+,

and scale down αlm, if the condition of penalty
decrease is satisfied.

2. Go to Step 1 until no constraint is violated.

Algorithm 6 EDSPC for multicast communications
Initialization: Choose ε > 0. Let αlm = α0

lm, ∀ l ∈ L,m ∈
Ml and randomly choose r and p.
Set T = T0, and select a sequence of time epochs
{τ1, τ2, . . .} in continuous time.

Repeat for each user l
1. Randomly pick r′l ∈[ 0, rmax

l ], and update p′
l according

to (16).
2. Keep sensing the change of∑

m∈Ml

αlm(rl − log(1 + γlm(p)))+ broadcast by other

users.
3. Let � be the difference between L(p, rl|r−l, {αlm})

and L(p′, r′l|r−l, {αlm}), and accept r′l and p′
l with

probability 1, if � ≥ 0, or with probability exp(�
T ),

otherwise.
4. Broadcast Ul(r′l), if r

′
l is accepted.

5. For each time epoch τi, update T = ξT .
Until T < ε.

Performance evaluation
In this section, we evaluate the performance of Algo-
rithms 5 and 6 for multicast communications. We con-
sider a wireless network with four transmitters and each
transmitter has two receivers. These transmitters and
receivers are randomly placed on a 10-by-10m2 square
area. The channel gains hlm are equal to d−4

lm , where dlm
represents the distance between the transmitter l and the
receiverm. The channel gains hlm are equal to d−4

lm , where
dlm represents the distance between the transmitter l and
the receiver m. We assume Ul(rl) = rl, Pmax

l = 1, and
nlm = 10−4 for all l ∈ L andm ∈ Ml. Figure 10 illustrates
the fast convergence performance of Algorithms 5 and 6
in multicast communications.k Besides, we examine the
average performance (with confidence interval) of DSPC
and EDSPC for multicast communications under 100 ran-
dom initializations with the same system parameters as in
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Figure 10 Convergence performance of DSPC and EDSPC for
multicast communications, where α0

lm = 20, ∀ l ∈ L,m ∈ Ml .

the case shown in Figure 10. As illustrated in Figure 11,
both Algorithms 5 and 6 are robust against the initial value
variations.

Conclusion
We studied the distributed power control problem of
optimizing the system utility as a function of the achiev-
able rates in wireless ad hoc networks. Based on the
observation that the global optimum lies on the bound-
ary of the feasible region for unicast communications,
we focused on the equivalent but more structured prob-
lem in the form of maximizing the minimum weighted
utility. Appealing to EDT, we decomposed the minimum
weighted utility maximization problem into subproblems
by using penalty multipliers for constraint violations. We
then proposed a DSPC algorithm to seek a globally opti-
mal solution, where each user stochastically announces its
target utility to improve the total system utility via SA.
In spite of the nonconvexity of the underlying problem,
the DSPC algorithm can guarantee global optimality, but
only with a slow convergence rate. Therefore, we proposed
an EDSPC to improve the convergence rate with geomet-
ric cooling schedule in SA. We then compared DSPC and
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Figure 11 Comparison of average performance (with confidence
interval) of DSPC and EDSPC for multicast.

EDSPC with the existing power control algorithms and
verified the optimality and complexity reduction.
Next, we proposed the joint scheduling and power

allocation policy for queueing systems by integrating
our distributed power control algorithms with the back-
pressure algorithm. The stability region was evaluated,
which is shown to be strictly greater than the throughput
region in the corresponding saturated case. Beyond uni-
cast communications, we generalized our power control
algorithms to multicast communications by jointly maxi-
mizing the minimum rates on bottleneck links in different
multicast groups. Our DSPC approach guarantees global
optimality without the need of channel information, while
reducing the computation complexity, in general systems
with unicast and multicast communications, and applies
to both backlogged and random traffic patterns.

Endnotes
a We use the terms “user” and “link” interchangeably
throughout the article.
b We use bold symbols (e.g., p) to denote vectors and cal-
ligraphic symbols (e.g., L) to denote sets.
c The QoS constraint for each link can be incorporated in
(2), and the proposed algorithms in the following section
can easily be adapted to this case at the cost of added nota-
tional complexity.
d For some special utility functions Ul(·), (2) can be trans-
formed into a convex problem [3]. In this article, we focus
on the nonconvex case that cannot be transformed to a
convex problem by change of variables.
e The local optimal solution found by ADP matches the
globally optimal solution only in one of the cases that are
illustrated in Table 2.
f By definition, a function f : Rn → R is quasi-convex,
if its domain domf and all its sublevel sets Sc = {x ∈
domf |f (x) ≤ c}, for c ∈ R, are convex [26].
g A power control algorithm is of standard form, if the
interference function (the effective interference each link
must overcome) is positive, monotonic and scalable in
power allocation [27].
h The geometric cooling schedule is employed to acceler-
ate the convergence rate of DSPC in the simulation. DSPC
updates penalty values until they satisfy the threshold-
based optimality condition.
i Note that the feasible utility region F defined in
Section “Power control for unicast communications” is
the throughput region, when the utility function is the
same as the rate function.
j The transmission mode is defined as the transmission
rate pair within the throughput region F .
k The other existing algorithms have specifically been
designed for unicast communications; therefore, they are
excluded here from the performance comparison.
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