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Abstract Quantized inter-agent communications in game-theoretic and distributed optimization algorithms

generate uncertainty that affects the asymptotic and transient behavior of such algorithms. This chapter uses

the information-theoretic notion of differential entropy power to establish universal bounds on the maximum

exponential convergence rates of primal-dual and gradient-based Nash seeking algorithms under quantized

communications. These bounds depend on the inter-agent data rate and the local behavior of the agents’

objective functions, and are independent of the quantizer structure. The presented results provide trade-offs

between the speed of exponential convergence, the agents’ objective functions, the communication bit rates,

and the number of agents and constraints. For the proposed Nash seeking algorithm, the transient perfor-

mance is studied and an upper bound on the average time required to settle inside a specified ball around the

Nash equilibrium is derived under uniform quantization. Furthermore, an upper bound on the probability that

the agents’ actions lie outside this ball is established. This bound decays double-exponentially with time.

1 Introduction

Modern societies are heavily dependent on networking technologies for almost every type of activity. The

Internet, smart phones, and cloud computing could not exist without networking. In all networked systems,

a limited number of resources, e.g., bandwidth and computing power, are shared among the interconnected

devices, hereafter called the agents. The performance of the networked system is highly dependent on how

these resources are shared among the agents. Hence, resource allocation algorithms play an important role

in networking technologies. The network resource allocation problem between the agents can be formulated

as a global optimization problem with a team-optimal solution, or modeled as a non-cooperative game. The

solution in the former case is team-optimal, whereas the resources are shared according to the equilibrium

of the game among the selfish agents in the latter.

Ehsan Nekouei
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This chapter studies two distinct scenarios for the network resource sharing problem related to these cases.

In the first scenario, the resource allocation problem is posed as a network utility maximization (NUM)

problem, and the agents deploy a distributed, iterative primal-dual optimization algorithm to solve the NUM

problem. In the second scenario, the interaction between the agents is modeled as a non-cooperative game

and the agents compute the Nash equilibrium (NE) solution of the game using a gradient-based Nash seeking

algorithm. The communication channels between the agents are modeled as digital ones since the agents may

be far away from each other. The actions of the agents are hence quantized into discrete-valued symbols that

may are represented as bits. The finite capacity of practical communication leads to an upper bound on

the average number of bits transmitted per unit time. Consequently, the agents’ local variables can only be

transmitted in a quantized form using a finite number of bits per time interval. It is known in the literature

that such data rate limitations can have detrimental impacts on the performance of control and optimization

algorithms. For example, a communication channel deployed in a feedback control system can destabilize

the system if its data rate is too low, e.g., see [1] and [2]. Moreover, in distributed optimization as well as

Nash equilibrium seeking algorithms, the quantized communications results in information ambiguity since

each agent receives only quantized information from the other agents (which is typically different from

unquantized information).

The aim of this chapter is to quantify the impact of quantized communications in NUM problems and

non-cooperative games by making use of information-theoretic ideas. The results presented integrate and

summarize those in [3] and [4].

The remainder of the chapter is organized as follows. The next section introduces the quantized primal-

dual algorithm for NUMs and studies its asymptotic performance under quantized inter-agent communica-

tions. In section 3, a quantized gradient-based Nash seeking algorithm is proposed and its asymptotic and

non-asymptotic behaviors are analyzed under quantized communications. Section 3.3 presents the numerical

results, which is followed by the concluding remarks of the Section 4.

2 Primal-dual Algorithm Under Quantized Communications

In the seminal work [5], Kelly et al. introduced the network utility maximization (NUM) approach, which

provides decentralized frameworks in the form of primal, dual, and primal-dual (PD) decomposition meth-

ods, for solving network resource allocation problems. Each decomposition method distributes the compu-

tational burden of solving the resource allocation problem among the agents, while the task of information

transfer between the agents is handled by the underlying communication network. The problem of devising

efficient decomposition methods for NUM problems has been extensively studied in the literature, e.g., see

[6] and the references therein. While the performance of distributed optimization algorithms, in particular

of NUM algorithms, is well understood under perfect communication channels, investigation of the impact

of imperfect communications on these optimization algorithms is relatively a new research area that has

attracted much interests in the recent years, e.g., see [7], [8].

This section focuses on a NUM problem in which a group of agents maximize the sum of their local

concave objective functions subject to a set of linear constraints using a quantized PD algorithm with a ran-

dom initial condition. Following the conventions of the NUM literature, e.g., see [5], [6] and the references

therein, it is assumed that the primal variables are updated by the agents, whereas each dual variable is up-

dated by a network node (NN) that has access to the knowledge of the the constraint associated with that

specific dual variable. Thus, the agents and NNs need to exchange the quantized values of the primal and
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dual variables to execute the PD algorithm. The impact of quantized communications between the agents

and NNs on the convergence rate of the PD algorithm under quantization is investigated in this setup.

The rest of this section first studies the system model, and then describes the communication graph, the

structure of quantizers, as well as the underlying standing assumptions. Asymptotic and non-asymptotic

results on the convergence of PD algorithm under quantization are presented.

2.1 NUM Model

A specific formulation of the NUM problem as one of convex optimization involves M agents, who maximize

the sum of their individual objective functions subject to a set of linear equality constraints. Let xi and

Ui

(

xi
)

represent the decision variable of the agent i and its objective function, respectively. Assume that the

objective function of each agent is concave in its decision variable. The agents then collectively solve the

following NUM problem:

maximize
x

M

∑
i

Ui

(

xi
)

Subject to Ax = b,
, (1)

where, M is the number of agents, b∈RN , A∈RN×M , N is the number of constraints, and x =
[

x1, · · · ,xM
]⊤

.

The condition N < M is imposed to ensure that the feasible set of the optimization problem (1) is non-

empty. The matrix A is assumed to be full rank, i.e., rank(A) = N, to ensure the uniqueness of the dual

optimal solution. The objective function in (1) is concave and the constraints are linear. Thus, the centralized

optimization problem (1) can be solved using the standard convex optimization techniques.

When solving the problem in a distributed manner using the PD algorithm [6], the primal and dual vari-

ables are updated according to

xi
k = xi

k−1 +µk−1

(

d

dxi
Ui

(

xi
k−1

)

−A⊤i λ k−1

)

,1≤ i≤M

λ
j

k = λ
j

k−1 +µk−1

(

Ā jxk−1−b j

)

1≤ j ≤ N, (2)

where µk−1 is the step size of the algorithm at iteration k− 1, xi
k and λ

j
k denote the values of ith primal

variable and jth dual variable at iteration k, respectively. In terms of notation, λ k−1 =
[

λ 1
k−1, · · · ,λ N

k−1

]⊤
,

Ai denotes the ith column of the matrix A, and Ā j denotes the jth row of matrix A. The solution of the

optimization problem (1) is obtained following a primal-dual (PD) decomposition approach in which the

primal variables, i.e., agents’ decision variables, are updated by the agents at each iteration. In addition, at

each iteration of the PD algorithm, the jth dual variable, i.e., λ j, is updated by the specific jth network node

(NN) with knowledge of the parameters characterizing the constraint associated with λ j, i.e., A j and b j. The

vector of PD variables at iteration k, i.e., yk, is defined as the vector concatenation of xk and λ k, i.e.,

yk =
[

xk, λ k

]

.

It is assumed that the initial primal and dual variables, i.e., x0 and λ 0, are chosen randomly according

to the probability density functions px0
(x) and pλ 0

(λ ), respectively. By allowing the initial condition to be

random, the primal and dual variables become random variables. This facilitates the use information theo-
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retic tools for studying the speed of exponential convergence of the primal-dual algorithm under quantized

communications. Furthermore, the following assumptions are imposed on the objective functions of agents,

the step size µk, px0
(x), and pλ 0

(λ ).

1. The agents’ objective functions are concave and twice continuously differentiable.

2. Umin
i ≤ d2

dxi2
Ui

(

xi
)

≤Umax
i < 0 for xi ∈ R and all i.

3. µk ≤mini
1

|Umin
i | for all k.

4. The sequence {µk}k converges to µ⋆ > 0.

5. The random vectors x0 and λ 0 are mutually independent and the distributions of x0 and λ 0 have finite

differential entropies, i.e.,

∣

∣

∣

∣

−
∫

px0
(x) log

(

px0
(x)
)

dx

∣

∣

∣

∣

< ∞

∣

∣

∣

∣

−
∫

pλ 0
(λ ) log

(

pλ 0
(λ )
)

dλ

∣

∣

∣

∣

< ∞

Assumptions 1 and 2 above are standard in the optimization literature. Assumption 2 implies that the ob-

jective functions of agents are strongly concave and the first derivative of each objective function is Lipschitz

continuous. Assumption 4 implies that the unquantized update rule does not employ a diminishing step-size

rule as the PD update may not converge exponentially with such a step-size rule. Assumptions 3 and 4,

which are not commonly used in the literature, allow usage of the entropy power method from information

theory. Assumption 5 implies that the initial condition injects a minimum amount of uncertainty to the PD

algorithm, and the amount of uncertainty due to the initial condition is bounded. Variants of assumption 5

are used in the quantized feedback control literature [1].

2.1.1 Communication Topology and Cost

The inter-agent communication topology is represented as a bipartite graph induced by the N×M constraint

matrix A. In this graph, the edges exist only between the agents and the network nodes (NNs), which form

two disjoint sets of vertices. There exists an edge between agent i and NN j in the communication graph if

and only if A ji 6= 0.

The communication mechanism is broadcast in nature, with each vertex ‘listening’ and broadcasting only

to those other vertices with which it shares an edge. This is implemented by uniquely assigning every vertex

in the graph one of N +M disjoint transmission radio-frequency bands (frequency division multiplexing) or

one of N +M disjoint time slots per cycle (time division multiplexing), before the system is deployed. Any

other vertex that needs to listen to a transmission just tunes in to the appropriate frequency band or time

slot dedicated to the corresponding transmitter. Note that the edges do not represent individual one-to-one

channels, but indicate the broadcast transmitter-receiver structure of the system.

Under typical digital modulation formats, the width of the frequency band/time-slot allocated to agent i

and/or the average transmission power it consumes to broadcast its encoded symbols to all NNs j with A ji 6= 0

will be proportional to its average data rate Ri
x := limk→∞

1
k ∑k−1

t=0 log

∣

∣

∣A
x

i,t

∣

∣

∣. Similarly, the band/slot-width

and/or transmission power used by NN j to broadcast its encoded dual symbols to all agents i with A ji 6= 0

is typically proportional to R
j

λ
:= limk→∞

1
k ∑k−1

t=0 log

∣

∣

∣A
λ
j,t

∣

∣

∣. Equation (5) in the upcoming section, which can

be intuitively interpreted as ∑M
i=1 Ri

x +∑N
j=1 R

j

λ
, then captures the total amount of physical resources, i.e.,
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time, bandwidth, or transmission power, required for the system to communicate. It can be seen that this

communication cost scales with O(N +M) as the network grows in size. Note that due to the broadcast

nature of the system, every transmission can be heard by multiple receivers, without the transmitter having

to use up extra resources.

2.1.2 A Quantizer Structure for NUM

To execute the PD update rule (2), the agents and NNs require the knowledge of dual and primal variables,

respectively. Since the agents and NNs are not necessarily co-located, the information exchange between

NNs and agents is performed via broadcast communication channels, as described in the next subsection.

Due to the capacity limitations of these channels, only quantized versions of the primal and dual variables

can be exchanged between NNs and agents.

At iteration k, agent i encodes xi
k to Q̂x

i,k using an adaptive encoder mapping of the form

Q̂x
i,k = Ex

i,k

(

{

xi
n

}k

n=0
,
{

Q̂x
i,n

}k−1

n=0

)

.

It then broadcasts Q̂x
i,k to all NNs j with A ji 6= 0. The output of the encoder of agent i at iteration k, i.e., Q̂x

i,k,

belongs to the finite alphabet set A x
i,k. Thus, agent i requires log2

∣

∣

∣A
x

i,k

∣

∣

∣ bits to transmit its encoded symbol

to NNs. A large value of

∣

∣

∣A
x

i,k

∣

∣

∣ indicates that agent i transmits its decision variable with high precision to

NNs whereas a low

∣

∣

∣A
x

i,t

∣

∣

∣ indicates low quality communication between agent i and NNs. Upon receiving

Q̂x
i,k, all NNs j with A ji 6= 0 reconstruct the quantized estimate of xi

k, i.e., Qx
i,k, using the decoder mapping

Qx
i,k = Dx

i,k

(

{

Q̂x
i,n

}k

n=0

)

.

Similarly, at iteration k, NN j chooses symbol Q̂λ
j,k from the finite alphabet set A λ

j,k according to the

adaptive encoding map

Q̂λ
j,k = Eλ

k

(

{

λ j
n

}k

n=0
,
{

Q̂λ
j,n

}k−1

n=0

)

,

and broadcasts Q̂λ
j,k to all the agents with index i, where A ji 6= 0. Next, all agents i with A ji 6= 0 construct the

quantized version of λ
j

k , i.e., Qλ
j,k, using the decoding map Qλ

j,k = Dλ
j,k

(

{

Q̂λ
j,n

}k

n=0

)

. Note that this formu-

lation allows the encoded symbol at iteration k to depend on the current and past values of the primal/dual

variables as well as the past outputs of the encoder.

Let Q =

{

{

Ex
i,k (·),Dx

i,k (·)
}

i
,
{

Eλ
j,k (·),Dλ

j,k (·)
}

j

}∞

k=0

be a quantization scheme. Then, the quantized ver-

sions of the PD variables at iteration k under the quantization scheme Q are denoted by Qk, i.e.,

Qk =
[

Qx
k, Qλ

k

]

,

where Qx
k=
[

Qx
1,k, · · · ,Qx

M,k

]⊤
and Qλ

k =
[

Qλ
1,k, · · · ,Qλ

N,k

]⊤
.
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Next, three notions of data rate for a given quantization scheme Q are defined and later used to study the

convergence behavior of primal, dual, and PD variables. The average aggregate data rate per unit time for

transmitting the primal variables to NNs under the quantization scheme Q, Rx, is defined as

Rx = lim
k→∞

1

k

k−1

∑
t=0

(

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

(3)

Similarly, define the average aggregate data rate per unit time for broadcasting the dual variables to agents

under the quantization scheme Q, Rλ , as

Rλ = lim
k→∞

1

k

k−1

∑
t=0

(

N

∑
j=1

log

∣

∣

∣A
λ
j,t

∣

∣

∣

)

(4)

Finally, the average total date rate per unit time under the quantization scheme Q, i.e., RQ, is defined as

RQ = lim
k→∞

1

k

k−1

∑
t=0

((

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

+
N

∑
j=1

log

∣

∣

∣A
λ
j,t

∣

∣

∣

)

(5)

The quantized PD update rule under the quantization scheme Q is formulated as

xi
k = xi

k−1 +µk−1

(

d

dxi
Ui

(

xi
k−1

)

−A⊤i Qλ
k−1

)

,

λ
j

k = λ
j

k−1 +µk−1

(

Ā jQ
x
k−1−b j

)

(6)

Let x⋆, λ ⋆
be the primal optimal and dual optimal solutions, respectively. Further, let y⋆ be the vector

concatenation of x⋆, λ ⋆
. Define εk = yk−y⋆ as the difference between the PD variables at iteration k and the

optimal solution. Let ‖εk‖2 denote the distance of the PD variables at iteration k from optimal solution, i.e.,

‖εk‖2 =

√

√

√

√

M

∑
i=1

(

xi
k− xi⋆

)2
+

N

∑
j=1

(

λ
j

k −λ j⋆
)2

, (7)

where xi⋆ and λ j⋆ are the optimal values of the primal variable xi and the dual variable λ j, respectively.

Then, the mean square distance (MSD) of the PD variables from the optimal solution at iteration k under the

quantization scheme Q is defined as E

[

‖εk‖2
2

]

. Define the MSD of the primal variables from the optimal

primal solution at iteration k as E
[

∥

∥εx
k

∥

∥

2

2

]

where εx
k = xk− x⋆. Similarly, the MSD of the dual variables at

iteration k from the optimal dual solution is defined as E

[

∥

∥ελ
k

∥

∥

2

2

]

where ελ
k = λ k−λ ⋆

. Next, the class of

optimum achieving (OA) quantization schemes are defined.

Definition 1. The quantization scheme Q is called an OA quantization scheme if, under Q, the primal and

dual variables converge to their optimal values x⋆ and λ ⋆
. That is:

lim
k→∞

xk = x⋆

lim
k→∞

λ k = λ ⋆



Impact of Quantized Inter-agent Communications on Game-Theoretic and Distributed Optimization Algorithms 7

Definition 1 implies that, under an OA quantization scheme, the quantization error does not impede

the convergence of the PD algorithm to the optimal solution. Thus, under an OA quantization scheme, the

PD algorithm converges to the optimal solution of the optimization problem regardless of the quantized

communication between agents and NNs.

2.2 Distributed Optimization Results and Discussion

This section analyzes the impact of quantized communications on the mean square distance (MSD) from

the optimal solution of the primal and dual variables generated by the primal-dual algorithm (PD) for two

different regimes: (i) Asymptotic regime, (ii) Non-asymptotic regime. In the asymptotic regime, the behavior

of the MSD under OA quantization schemes is studied as the number of iterations k increase to infinity. To

this end, the notion of distance decay exponent (DDE) is introduced, which captures the rate of exponential

convergence of the MSD to zero. Universal lower bounds on the DDE of PD variables, namely the primal

variables and dual variables, are established in Theorems 1, 2, 3, and 4. In the non-asymptotic regime, the

behavior of the MSD is investigated for any finite k. Here, the results provide universal lower bounds on the

MSD for any finite k (see Corollaries 1 and 2 for more details).

2.2.1 Asymptotic behavior of PD algorithm under Quantization

This subsection first introduces the notion of the distance decay exponent (DDE) for the primal and dual

variables in PD. Subsequently, universal lower bounds on the DDE of PD primal and dual variables are

derived.

Definition 2. Let Q be an OA quantization scheme. Then, the DDE of the PD primal and dual variables

under Q are defined as

liminf
k→∞

1

k
logE

[

‖εk‖2
2

]

,

liminf
k→∞

1

k
logE

[

‖εx
k‖2

2

]

,

liminf
k→∞

1

k
logE

[

∥

∥

∥ελ
k

∥

∥

∥

2

2

]

,

respectively.

The DDEs capture the speed of exponential mean square convergence of the PD primal and dual variables

to their corresponding optimal solutions. These are non-positive quantities, where a more negative DDE in-

dicates faster convergence to the optimal solution. Moreover, a zero DDE implies slower-than-exponential

convergence. In this subsection, the information-theoretic notion of entropy power is used to establish uni-

versal lower bounds on the DDE of the primal and dual variables.

The next theorem provides a universal lower bound on the DDE of the PD variables under OA quantiza-

tion schemes. The proof uses the information-theoretic notion of differential entropy power, which has been

previously applied to study control with communication constraints; see e.g. [9].
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Theorem 1. Let Q be an OA quantization scheme. Then, the DDE of PD variables under Q can be bounded

from below

liminf
k→∞

1

k
logE

[

‖εk‖2
2

]

≥ 2

N +M

(

M

∑
i=1

log

(

1+µ⋆ d2

dxi2
Ui

(

xi⋆
)

)

−RQ

)

, (8)

where xi⋆ is the optimal value of the primal variable xi.

Proof. See Appendix.

Theorem 1 establishes an explicit universal lower bound on the DDE of PD variables under OA quanti-

zation schemes. This bound is universal in the sense that it is independent of the structure of the quantizer,

and is thus applicable to all quantization schemes which are OA.

According to Theorem 1, for a given average total data rate RQ, the PD variables converge to the optimal

solution at most exponentially fast. The speed of this exponential convergence is bounded by the average total

data rate under the quantization scheme, i.e., RQ, and also by the behavior of the objective functions of agents

around the optimal solution. As stated in Theorem 1, the lower bound on the DDE for PD variables decreases

linearly with RQ. Note that as RQ becomes large, the NNs and agents have more precise information about

the primal and dual variables. The lower bound on the DDE also increases with the second derivatives of the

agents’ objective functions at the optimal solution. As these second derivatives becomes less negative, the

objective function becomes flatter near the optimal solution and the quantized PD algorithm can be expected

to converge more slowly. Theorem 1 is in concordance with this intuition.

The next theorem establishes a universal lower bound on the DDE of primal variables in the quantized

PD update rule under an OA quantization scheme.

Theorem 2. [10] Under an OA quantization scheme Q, the DDE of the primal variables is lower bounded

by

liminf
k→∞

1

k
logE

[

‖εx
k‖2

2

]

≥ 2

M

(

M

∑
i=1

log

(

1+µ⋆ d2

dxi2
Ui

(

xi⋆
)

)

−Rλ

)

. (9)

According to Theorem 2, the exponential convergence speed of the primal variables is limited by (i) the

behavior of objective functions of the agents around the optimal solution, (ii) the average aggregate data rate

for transmission of dual variables, and (iii) the number of agents. Different from the PD bound in Theorem

1), this lower bound on the DDE of the primal variables depends only on the average aggregate data rate

for transmission of dual variables, i.e., Rλ , rather than on the average total data rate under the quantization

scheme Q. This observation signifies the role of the quantized dual variables on the convergence of the

primal variables.

The next theorem presents a result on DDE for dual variables.

Theorem 3. [10] The DDE of dual variables under an OA quantization scheme Q satisfies

liminf
k→∞

1

k
logE

[

∥

∥

∥ελ
k

∥

∥

∥

2

2

]

≥− 2

N
Rx. (10)

Theorem 3 establishes a universal bound on the fastest possible exponential convergence rate of the dual

variables under any OA quantization scheme Q. The lower bound in Theorem 3 is controlled by the number

of constraints and the average aggregate data rate for transmission of primal variables to NNs. Compared
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to the PD lower bound, it does not depend on the behavior of the objective functions of agents and is only

limited by the average aggregate data rate for transmission of the primal variables, i.e., Rx, rather than the

average total data rate RQ.

Next, a lower bound on the DDE of the PD algorithm is derived for quadratic NUM problems under

zoom-in quantization schemes (see Definition 3). This bound is tighter than the lower bound in Theorem

1 for the high data-rate regime. In a quadratic NUM problem, the objective function of agent i is given by

Ui

(

xi
)

= − ai
2

(

xi
)2

+ cix
i + fi where ai is a positive constant. The unquantized PD algorithm for quadratic

NUM problems can be written as

xi
k = (1−µai)xi

k−1 +µ
(

ci−A⊤i λ k−1

)

,1≤ i≤M

λ
j

k = λ
j

k−1 +µ
(

Ā jxk−1−b j

)

1≤ j ≤ N (11)

Let yk be the vector concatenation of xk and λ k. Then, (11) can be written as

yk = T yk−1 +µ

[

c

−b

]

where c = [c1 · · · ,cM]⊤ and the matrix T is defined as

T =

[

Diag(1−µa1, · · · ,1−µaM) −µA⊤

µA IN

]

(12)

in which IN denotes an N-by-N identity matrix and Diag(1−µa1, · · · ,1−µaM) is a diagonal matrix with

the ith diagonal element equal to 1−µai.

Let Q̃k =
{

Q̂x
1,n, · · · , Q̂x

M,n, Q̂
λ
1,n, · · · , Q̂λ

N,n

}k

n=0
be the collection of encoders’ outputs up to iteration k,

respectively.The quantized PD update rule is

xi
k = Tiix

i
k−1 +

M+N

∑
j=M+1

Ti jQ
λ ( j−M)

k +µci

λ
j

k = λ
j

k−1 +
M

∑
i=1

TjiQ
xi

k −µb j

The quantized update rule is denoted by yk+1 = T̂ (yk, q̃k) where q̃k is a realization of Q̃k. We use Ck (q̃k) to

represent the quantization cell corresponding to q̃k, i.e., the set of points in R
N+M which are mapped to the

same output by the encoder when Q̃k = q̃k. Next, a zoom-in quantization scheme is defined.

Definition 3. Consider the quantization scheme Q, and let Ck (q̃k) be the quantization cell at iteration k

which contains yk. Then, Q is a zoom-in quantization scheme if at time k+ 1 the image of Ck (q̃k) under

T̂ (·, q̃k) is quantized for all k ∈ N0 = {0,1,2, · · ·}.

In addition to the assumptions stated in Section 2.1 we also require

1. The matrix T is invertible and all its eigenvalues are inside the unit circle in the complex plane.

2. A zoom-in quantization scheme is employed and each primal/dual variable is independently quantized.

3. The distributions of initial primal and dual variables, i.e., px0
(x) and pλ 0

(λ ), are bounded and have finite

support sets.
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Fig. 1 Two dimensional

lattice of integers Z2 (a) and

the lattice TZ2 (b).

Theorem 4. [10] Consider any zoom-in quantization scheme Q with ρ =
δ max

k

δ min
k

(for all k) where δ max
k and

δ min
k are the maximum and minimum quantization steps under Q at iteration k, respectively. Let B be the

hypercube centered at the origin with the ith side length equal to 4ρ |Tii|+ 2‖T‖∞ where ‖·‖∞ denotes the

norm infinity and Tii is the i diagonal entry of matrix T . Let βT be the number elements in the set B∩TZN+M

where the lattice TZN+M is defined as TZN+M =
{

T I, I ∈ Z
N+M

}

and Z
N+M is the lattice of integers in

R
N+M . Then, the DDE of the PD variables under Q for quadratic NUM problems is lower bounded as

liminf
k→∞

1

k+1
logE

[

‖εk+1‖2
2

]

≥− 2

M+N
log

(

βT
(

∏M+N
i=1 |Tii|

)

)

(13)

.

Theorem 4 establishes a bound on the fastest possible exponential convergence speed of quantized PD

algorithms in quadratic NUM problems, under any zoom-in quantization scheme which is OA. The lower

bound in Theorem 4 depends on the number of agents, number of constrains and βT . The constant βT

depends on the dynamics of the unquantized PD algorithm, i.e., matrix T , and can be interpreted as the

number of lattice points in Z
N+M which lie in B after applying the linear transformation T to Z

N+M . Fig. 1

shows the two dimensional lattice of integers Z2 and its image after applying a linear transformation. In Fig.

1 (b), the number of lattice points in the square is equal to βT . Since the transformation T is linear, 0 always

lies in B which implies βT ≥ 1.

Consider the PD algorithm in a quadratic NUM problem under the zoom-in quantization scheme Q with

ρ =
δ max

k

δ min
k

. For the quadratic PD algorithms, Theorems 1 and 4 can be combined into

liminf
k→∞

1

k+1
logE

[

‖εk+1‖2
2

]

≥ 2

M+N

((

M

∑
i=1

log(1−µai)

)

−min(log(βT ) ,RQ)

)

(14)

If the quantization intervals for each primal/dual variable are divided into K ≥ 2 equal length intervals,

the data-rate under quantization scheme Q i.e., RQ, will increase by (N +M) log(K) bits and ρ does not

change. Hence, according to (14), the lower bound in Theorem 4 becomes tighter when compared to that in

Theorem 1 as RQ (or K) becomes large. This observation shows that the exponential convergence speed of

the quantized PD algorithm in quadratic NUM problems cannot be made arbitrarily fast by increasing RQ.
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An upper bound on βT can be obtained by finding the number of lattice points of ZN+M which lie in

the smallest hypercube containing the image of B under T−1. Let T−1 (B) be the image of the hypercube B

under linear transformation T−1. Let B⋆
T−1 be the smallest hypercube containing T−1 (B). Then, βT is upper

bounded by ∏i (⌊l⋆i ⌋+1) where l⋆i is the ith side length of B⋆
T−1 . In the numerical analysis, this upper bound

on βT is used to compute the lower bound in Theorem 4.

2.2.2 PD algorithm in the non-asymptotic regime

This subsection establishes universal lower bounds on the mean square distance (MSD) of primal-dual (PD),

primal and dual variables from their corresponding optimal solutions at any finite time instance k. Unlike

Theorems 1, 2 and 3, the following results are not limited to optimum achieving (OA) quantization schemes.

Thus, they give rise to universal lower bounds on the MSD of PD, primal and dual variables from their

corresponding optimal solutions, under arbitrary quantization schemes. The results in this subsection indicate

that the distance between the optimization variables and the optimal solution cannot be made arbitrarily close

to zero at a given time instance k. The following corollary presents a non-asymptotic lower bound on the

MSD of the PD variables.

Corollary 1. [10] Consider the PD algorithm under the quantization scheme Q. Then, the MSD of the PD

variables from the optimal solution at iteration k can be lower bounded as

logE
[

‖εk‖2
2

]

≥ log

(

e1− 1
M+N

2πe

)

+
2

N +M

(

M

∑
i=1

k−1

∑
n=0

log
(

1+µnUmin
i

)

+ h [y0]−
k−1

∑
t=0

((

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

+
N

∑
j=1

log

∣

∣

∣
A

λ
j,t

∣

∣

∣

))

, (15)

Corollary 1 provides a universal lower bound on the MSD of PD variables under quantized communica-

tions between agents and NNs. This result indicates that at a given time the PD variables cannot be arbitrarily

close to the optimal solution (in the mean square sense), and imposes a lower bound on the MSD of PD vari-

ables from the optimal solution at a given time. According to Corollary 1, the MSD of PD variables from

the optimal solution at iteration k is bounded from below by the behavior of the second derivative of the

objective functions of agents along the trajectories of primal variables up to time k−1, the total number of

bits exchanged between agents and NNs up to time k−1, the differential entropy of distribution of initial PD

variables, i.e., h [y0], and the number of constraints and agents. The impact of objective functions of agents

and the data rate between agents and NNs on the lower bound in (15) are similar to those in Theorem 1.

Note that the entropy power of y0, i.e., 1
2πe

e
2

N+M h[y0] is a measure of effective support volume of the

random vector y0. Thus, as h [y0] becomes large, the size of the effective support set of y0 increases, i.e., y0

will be distributed on a larger region of RN+M . As a result, the MSD of the PD variables from the optimal

solution increases since y0 effectively takes value from a larger set, a behavior predicted by Corollary 1.

The next corollary establishes a lower bound on the MSD of primal and dual variables:

Corollary 2. [10] Let E
[

∥

∥εx
k

∥

∥

2

2

]

and E

[

∥

∥ελ
k

∥

∥

2

2

]

be the MSD of the primal variables and dual variables,

respectively, at iteration k from the optimal solution. Then,
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logE
[

‖εx
k‖2

2

]

≥ log

(

e1− 1
M

2πe

)

+
2

M

(

M

∑
i=1

k−1

∑
n=0

log
(

1+µnUmin
i

)

+h [x0]−
k−1

∑
t=0

N

∑
j=1

log

∣

∣

∣A
λ
j,t

∣

∣

∣

)

,

logE

[

∥

∥

∥ελ
k

∥

∥

∥

2

2

]

≥ log

(

e1− 1
N

2πe

)

+
2

N

(

h [λ 0]−
k−1

∑
t=0

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

,

2.3 An Optimum Achieving Quantization Scheme for NUM

This section presents a zoom-in uniform optimum achieving (OA) quantization scheme for the PD algorithm,

denoted as Qa. It is also proven that the PD algorithm under the quantization scheme Qa converges to the

optimal solution of the optimization problem (1). To this end, assume that the unquantized PD algorithm

forms a contraction map with contraction constant α ∈ [0, 1) . Further assume that α is known by all agents

and NNs. Under the quantization scheme Qa, the quantization step at iteration k, i.e., δk, is set to δk = αk+1.

At time k = 0, the agent i generates xi
0 according to a uniform distribution on the interval (−Lα,Lα)

where L is a positive integer. Similarly, NN j generates λ
j

0 using a uniform distribution on (−Lα,Lα).
Next, agents and NNs quantize the initial primal and dual variables, respectively, using a midpoint uniform

quantizer on (−Lα,Lα) with quantization step δ0 = α . Thus, the quantizer employed by agents and NNs at

time k = 0, is given by Qa,0 (z) =
⌊

z
α

⌋

α + α
2

for z ∈ (−Lα,Lα) where ⌊·⌋ is the floor function. Each agent

(NN) only needs ⌈log2 (2L)⌉ bits to communicate its initial primal (dual) variable where ⌈·⌉ is the ceiling

function.

At time k + 1, agent i first encodes xi
k+1 using the encoder Q̂

(

xi
k+1−Cxi

k+1

δk+1

)

where Cxi

k+1 = Qx
i,k +

⌊

xi
k+1−xi

k

δk

⌋

δk, Qx
i,k is the quantized version of xi

k, and Q̂(·) is given by

Q̂(z) =







⌈

2
α

⌉

−1
(⌈

2
α

⌉

−1
)

≤ z≤
⌈

2
α

⌉

⌊z⌋ −
⌈

2
α

⌉

≤ z≤
(⌈

2
α

⌉

−1
) (16)

Let Ixi

k+1 be the interval centered at Cxi

k+1 with length 2
⌈

2
α

⌉

δk+1. It can be shown that xi
k+1 belongs to this

interval which implies that the encoder mapping is always well defined (see the proof of Theorem 5 for more

details).

Next, the agent i transmits Q̂

(

xi
k+1−Cxi

k+1

δk+1

)

to its neighboring NNs in the communication graph using

⌈

log2

(

2
⌈

2
α

⌉)⌉

bits. Agent i also transmits

⌊

xi
k+1−xi

k

δk

⌋

to its neighboring NNs. This will allow the neighboring

NNs of the agent i to compute Cxi

k+1, and update their decoders at time k+1. Note that

⌊

xi
k+1−xi

k

δk

⌋

is an integer

which can be transmitted using finite number of bits. Finally, the neighboring NNs of agent i construct the

quantized version of xi
k+1 using the decoder mapping Qx

i,k+1 =Cxi

k+1 + Q̂

(

xi
k+1−Cxi

k+1

δk+1

)

δk+1 +
δk+1

2
.
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At time k+1, NN j first encodes λ
j

k+1 using the encoder mapping Q̂

(

λ
j

k+1
−Cλ j

k+1

δk+1

)

where Cλ j

k+1 = Qλ
j,k +

⌊

λ
j

k+1
−λ

j
k

δk

⌋

δk, Qλ
j,k is the quantized version of λ

j
k and Q̂(·) is given by (16). Let Iλ j

k+1 be the interval centered

at Cλ j

k+1 with the length 2
⌈

2
α

⌉

δk+1. It can be shown that the λ
j

k+1 belongs to Iλ j

k+1 which indicates that the

encoder mapping is always well defined.

Next, NN j transmits Q̂

(

λ
j

k+1
−Cλ j

k+1

δk+1

)

and

⌊

λ
j

k+1
−λ

j
k

δk

⌋

to its neighboring agents in the communication

graph. Finally, the neighboring agents of the NN j construct the quantized version of λ
j

k+1 using the decoder

mapping Qλ
j,k+1 =Cλ j

k+1 + Q̂

(

λ
j

k+1
−Cλ j

k+1

δk+1

)

δk+1 +
δk+1

2
.

The next theorem shows that the quantized PD algorithm under Qa converges to the optimal solution.

Theorem 5. [10] The PD algorithm under the quantization scheme Qa converges exponentially to the opti-

mal solution of the optimization problem (1).

3 Gradient-based Nash Seeking Algorithms Under Quantized Communications

Game theory has been established to be of ubiquitous importance in engineering and used to analyze nu-

merous problems, e.g., power control in wireless networks [11], wind energy harvesting, or sensor coverage

[12]. In non-cooperative games, multiple agents aim to maximize individual utility functions by taking ac-

tions that are not necessarily coordinated with one another. The Nash equilibrium (NE) is one of the most

important solution concepts in such games.

The problem of finding Nash equilibria is an active research area that has attracted much attention, e.g.,

see [13] and [14] and references therein. Gradient-based equilibrium-seeking (ES) algorithms are popular

techniques for finding the NE of games with continuous action spaces and differentiable utility functions.

In such algorithms, each agent modifies its current action according to the partial derivative of its utility

function with respect to its action. The computation of this derivative implicitly requires communication

between agents, since it typically depends on the actions of other agents.

This section investigates the effect of quantized communication on gradient-based, Nash-seeking algo-

rithms. More specifically, the following questions are addressed: (i) How does the communication data rate

generally affect the convergence speeds achievable by ES algorithms? (ii) Given a uniform quantization

scheme, on average how many time-steps are required for the ES algorithm to settle inside a ball around

the NE? (iii) Given a uniform quantization scheme, what is the probability that agents’ actions lie outside

this ball at a given time? It is a point in the action space at which no agent can increase its own utility by

unilaterally changing its action.

Subsection 3.1 introduces the non-cooperative game among agents and the distributed Nash seeking algo-

rithm under quantized communications. The main results on the asymptotic and non-asymptotic behaviors

of the Nash seeking algorithm are discussed in Subsection 3.2.
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3.1 Game Model

Consider a game with M agents, indexed by i ∈M := {1, · · · ,M}. Let xi ∈R be the action of the i-th agent,

x−i :=
[

x1, · · · ,xi−1,xi+1,xM
]⊤ ∈ R

M−1, the vector of all agents actions except the i-th, and Ui

(

xi,x−i
)

∈ R

the utility of the i-th agent. Refer to this game as G = 〈M ,
{

xi
}

i
,{Ui (·)}i〉. Assume that each utility function

Ui

(

xi,x−i
)

is twice continuously differentiable and concave with respect to xi.

Ideally, each agent in the game would like to make its own utility as large as possible. However, since

the global maximizers of the utility functions will not generally coincide, a compromise is needed. This

is provided by the Nash equilibrium (NE), already. If all agents play their NE strategies, denoted by xi
NE,

i ∈M , then no agent can increase its individual utility by unilaterally changing its action, i.e.

xi
NE = argmax

xi
Ui

(

xi,x−i
NE

)

,∀i ∈M .

Throughout this section, it is assumed that the game admits a unique NE. This can be easily satisfied by

imposing some additional mild conditions on the utility functions of agents, e.g., see [15]. Games arising

in many engineering applications often admit a unique NE, which is associated with the desired operating

point.

3.1.1 Gradient-based Equilibrium Seeking with Quantized Communication

Gradient-based, equilibrium seeking (ES) algorithms are among the most popular iterative techniques for

finding the NE of a game with continuous action spaces and differentiable utility functions. In the absence

of quantization, such algorithms take the general form

xi
k+1 = xi

k +µk

∂

∂xi
Ui

(

xi
k,x
−i
k

)

,k ∈ N0 := {0,1,2 . . .} (17)

where xi
k is the action of the i-th agent at iteration k, x−i

k is the vector of all agent actions at iteration k except

the i-th, and µk > 0 is a time-varying step size.

In order to implement this update rule, each agent does not need to know other agents’ utility func-

tions, which may be kept private, but only their latest actions. However, agents in a distributed game are

often located far from each other, e.g. power plants competing in a wholesale electricity market for maxi-

mizing their individual profits. The long distance between agents, combined with finite transmission power

and bandwidth, limit the communication capacity between agents. Consequently, the agents in distributed

games cannot transmit their actions with infinite resolution, but instead exchange quantized versions that are

representable with finite numbers of bits.

Assuming that each i-th agent knows its own action xi
k perfectly, let Di,k

(

xi
k

)

∈ Ai,k represent the quan-

tized action broadcast by it to all other agents at iteration k. Here Ai,k ⊂ R is a finite set and
∣

∣Ai,k

∣

∣ is the

number of quantization levels used by the i-th agent at iteration k. A large value of
∣

∣Ai,k

∣

∣ implies that the

i-th agent transmits its action with high precision, whereas a low value reflects poor communication capacity

and low precision.

Let Dk

(

xk

)

∈ Ak represent the component-wise quantized version of the vector xk, that is Dk

(

xk

)

=
[

Di,k

(

xi
k

)]⊤
i

. Note that log |Ak| denotes the aggregate number of bits used by agents to represent their actions

in the k-th iteration, where |Ak| = ∏M
i=1

∣

∣Ai,k

∣

∣. With a slight abuse of notation, let Qk denote the quantized
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version of the vector x−i
k . The ES algorithm with quantization then takes the form

xi
k+1 = xi

k +µk

∂

∂xi
Ui

(

xi
k,Qk

)

, ∀i ∈M . (18)

Let D = {Dk}∞
k=0 be a quantization scheme. Given D , the average aggregate data rate per unit time is

defined as

RD := limsup
k−→∞

1

k

k−1

∑
j=0

log
∣

∣A j

∣

∣. (19)

The next subsection studies the asymptotic and transient performance of this algorithm.

3.2 Equilibrium-seeking Algorithm Results and Discussion

This section presents three performance measures for gradient-based equilibrium-seeking (ES) algorithms

under quantization (18) : (i) the asymptotic rate of exponential mean-square convergence to the Nash equi-

librium (NE), (ii) the expected time for agent actions to settle inside a specified neighborhood of the NE,

under uniform quantization, and (iii) the probability that agent actions at a given iteration k lie outside this

neighborhood, also under uniform quantization. The first criterion measures the long-term performance of

the system, whereas the other two criteria characterize its transient performance. It is assumed that x0, the

vector of initial agent actions, is drawn randomly according to a probability distribution on R
M . This as-

sumption allows application of stochastic methods to analyze performance, under mild assumptions on the

initial distribution.

3.2.1 Lower Bound on the Asymptotic Mean Square Convergence Rate

This subsection presents a universal lower bound on the asymptotic convergence rate of any quantized ES

scheme of the form (18). In this asymptotic analysis, it is assumed that

• the joint probability density function (pdf) px0
of initial actions has finite differential entropy, i.e.

∣

∣

∣
−∫ px0

(x0) log
(

px0
(x0)

)

dx0

∣

∣

∣
< ∞.

• the second partial derivatives of the utility functions are bounded above and below as

ci ≤
∂ 2

∂xi2
Ui

(

xi,x−i
)

≤ bi < 0, ∀x ∈ R
M (20)

• the step sizes µk > 0 converge to µ⋆ > 0 as k→ ∞ and also satisfy supk∈N0
µk <

1
maxi |ci| , where ci is the

lower bound (20) on the second derivative of the i-th agent’s utility function with respect to its action.

Next, equilibrium achieving (EA) quantization schemes are defined.

Definition 4. A quantization scheme D is equilibrium-achieving if all quantized and unquantized actions

converge to the NE with time for any initial condition in the support of px0
, i.e.
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lim
k−→∞

xk = xNE,

lim
k−→∞

Qk = xNE. (21)

The notion of distance decay exponent (DDE) for the ES algorithm under an EA quantization scheme is

defined next.

Definition 5. For a given equilibrium-achieving quantization scheme D , let εk be the difference between

agent actions and the NE at iteration k, i.e., εk = xk − xNE. Then the distance decay exponent (DDE) is

defined as

liminf
k−→∞

1

k
logE

[

‖εk‖2
2

]

.

The DDE gives the speed of exponential mean-square convergence of the agents’ actions to NE under D ,

where the expectation is taken with respect to the initial distribution of actions. A more negative exponent

indicates faster convergence. The first main result of this section is stated now:

Theorem 6. [4] Let D be any equilibrium-achieving quantization scheme with average aggregate data rate

RD (19). Then, the error decay exponent is lower-bounded as

liminf
k−→∞

1

k
logE

[

‖εk‖2
2

]

≥ 2

M

(

M

∑
i=1

log

(

1+µ⋆ ∂ 2Ui

∂xi2

∣

∣

∣

∣

xNE

)

−RD

)

. (22)

Theorem 6 establishes a universal lower bound on the rate of exponential mean-square convergence that

holds for any EA quantization scheme. This lower bound depends on the average aggregate date-rate RD , the

second derivatives of the utility functions at the NE, and the number of agents. Recall that a more negative

DDE corresponds to faster convergence.

Based on (22), the lower bound decreases (linearly) as RD increases. This reflects the fact that each

agent has more accurate information about the actions of the others and hence can make better decisions.

Furthermore, the bound increases with the second derivatives of the utility functions. This is because a less

negative second derivative indicates a flatter utility function, hence slower convergence to the NE.

Though the bound above may be conservative, unlike previous work it does not impose any particular

structure on the quantization scheme, and delineates a universal trade-off between convergence rate, utility

functions, data rate, and the number of agents.

3.2.2 Transient Performance

This subsection investigates the transient behavior of the equilibrium-seeking (ES) algorithm (18) under a

uniform, time-invariant quantization scheme. The following assumptions are made on the game G and the

ES algorithm (17):

• The NE of the game G belongs to the open, bounded and connected set R ⊂ R
M which has non-zero

Lebesgue measure.

• x0, i.e, the initial action of agents, is randomly drawn from R.

• ∂
∂xi Ui

(

xi,x−i
)

is twice continuously differentiable for all i.
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• The ES algorithm under perfect communication, i.e., the update rule (17), is a pseudo-contraction map-

ping. That is

‖xk− xNE‖2 ≤ α
∥

∥xk−1− xNE

∥

∥

2
,

where α ∈ [0,1 ) and

xi
k = xi

k−1 +µk−1

∂

∂xi
Ui

(

xi
k−1,x

−i
k−1

)

.

• The sequence {µk}∞
k=0 is assumed to be bounded.

Let d be the diameter of R, that is, d = sup{‖x− y‖2 : x,y ∈R}. Let B(xc,d/2) be the smallest ball

containing R where B(xc,d/2) represents a closed ball in Euclidean norm centered at xc with radius d/2. Let

Q(xc,3d/2) be the cube centered at xc with side length 3d. In this subsection, assume that the agents employ

a uniform, time-invariant quantization scheme denoted by Du. Under Du, the intersection of Q(xc,3d/2) and

action space of each agents is uniformly quantized with the quantization step δ . The ES update rule under

the uniform quantization scheme Du is given by

xi
k+1 = xi

k +µk

∂

∂xi
Ui

(

xi
k,Du

(

x−i
k

))

,∀i. (23)

Since the quantization scheme Du is only defined on Q(xc,3d/2), the actions of agents have to stay

in Q(xc,3d/2). Note that if x0, the initial action of agents, belongs to R and the quantization step δ is

sufficiently small, then, the actions of agents will always stay in Q(xc,3d/2). A sufficient condition for δ is

given by

sup
k

µk

(

δ
√

∑
i

Φ2
i +

1

2
δ 2

(

M

√

∑
i

Ψ 2
i +

√

∑
i

η2
i

))

≤ (1−α)d, (24)

where Φi, Ψi and ηi are given by

Φi = sup
x∈Q(xc,3d/2)

∑
j 6=i

∣

∣

∣

∣

∂ 2

∂ 2x jxi
Ui

(

xi,x−i
)

∣

∣

∣

∣

,

Ψi = sup
x∈Q(xc,3d/2)

∥

∥

∥

∥

∇2 ∂

∂xi
Ui

(

xi,x−i
)

∥

∥

∥

∥

2

,

ηi = sup
x∈Q(xc,3d/2)

∣

∣

∣

∣

∣

∂ 3

∂xi3
Ui

(

xi,x−i
)

∣

∣

∣

∣

∣

.

respectively, where ∇2 (·) is the Hessian operator. The left hand side of (24) is an upper bound on the distor-

tion induced by the quantization scheme Du. Thus, (24) essentially implies that the quantization scheme Du

is well defined if the distortion caused by the quantization scheme at each time step is small enough.

The term Φi represents the sensitivity of update rule of the i-th agent to the actions of other agents. When

agents are less sensitive to each other’s actions, according to (24), a relatively large quantization step δ can be

chosen without introducing a large amount of distortion in the evolution of the ES algorithm. However, when



18 Ehsan Nekouei, Tansu Alpcan, Robin J. Evans

agents are highly sensitive to each other’s actions, a high resolution quantization scheme should be employed

to avoid a large amount of distortion. Moreover, according to (24), small values of the step size result in

small distortion values. Since each agent modifies its action by adding the term µk
∂

∂xi Ui

(

xi
k,Du

(

x−i
k

))

to

its previous action, a small value of step size results in a small value of distortion at the cost of a slow

convergence speed.

Let E [N ] denote the expected time required for xk to settle inside B(xNE,r). A small value of E [N ]
indicates that the ES algorithm, on average, quickly approaches the NE whereas a large value of the E [N ]
indicates a relatively slow convergence. Due to the quantization distortion, the radius of B(xNE,r) cannot be

arbitrarily small. If r is less than the total quantization distortion, one cannot guarantee that agents’ actions

will eventually settle inside B(xNE,r) as k becomes large. Here, it is assumed that r > θ where θ is given by

θ =
supk µk

1−α

(

δ
√

∑
i

Φ2
i +

1

2
δ 2

(

M

√

∑
i

Ψ 2
i +

√

∑
i

η2
i

))

.

Note that, θ represents an upper bound on the aggregate distortion caused by the quantization scheme Du

over time (see [4] for more details). The next theorem provides an upper bound on E [N ].

Theorem 7. [4] Consider the uniform quantization scheme Du with the quantization step δ satisfying (24).

Let E [N ] denote the expected time required for the ES algorithm under Du to settle in B(xNE,r) with r > θ .

Then, E [N ] is upper bounded as

E [N ]≤ 1

log
(

1
α

)






E






log

(
∥

∥x0− xNE

∥

∥

2

r−θ

)

I{‖x
0
−x

NE‖2
r−θ >1

}







Theorem 7 provides an upper bound on the expected time required for the actions of agents to settle

inside a ball of radius r centered at the NE. This upper bound is controlled by α , θ , r and the distribution of

the initial actions of agents. According to this theorem, the effect of α on the expected time is manifested

through the multiplicative factor 1

log( 1
α )

with α ∈ [0,1) . As α becomes closer to zero, the distance between

the actions of agents and the NE decays faster due to the pseudo-contraction property of the non-quantized

update rule. Thus, the average time required to settle inside B(xNE,r) becomes smaller as α decreases.

The function E [N ] is non-increasing in r. That is, as r becomes small, it takes more time for the ES

algorithm (23) to settle in B(xNE,r). This observation is also consistent with our result in Theorem 7, i.e., the

upper bound on the E [N ] increases as r becomes small. Finally, Theorem 7 suggests that the expected time

required to settle inside B(xNE,r) is influenced by the distribution of initial actions of agents, px0
(x). Observe

that, when px0
(x) is highly concentrated around the Nash equilibrium, the ES algorithm (23) requires less

time to settle inside B(xNE,r) compared to the case that px0
(x) has a low degree of concentration around the

NE.

The upper bound in Theorem 7 depends on the distance between the initial action of agents and the NE,

i.e.,
∥

∥x0− xNE

∥

∥

2
. Since both x0 and xNE belong to R, one can use the fact that

∥

∥x0− xNE

∥

∥

2
≤ d to obtain an

upper bound on the E [N ] which is independent of x0 and xNE. This result is stated in the next corollary.

Corollary 3. [4] The expected time required for the ES algorithm under Du to settle in B(xNE,r) can be

upper bounded as

E [N ]≤ 1

log
(

1
α

) log

(

d

r−θ

)

.
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Another performance measure for the transient behavior of the ES algorithm (23) under the uniform

quantization scheme Du is investigated next. In this case, the probability that xk lies outside a ball of radius

r > θ around the NE, i.e.,

Pr
{

‖xk− xNE‖2 > r
}

.

Note that, Pr
{∥

∥xk− xNE

∥

∥

2
> r
}

is a function of k, and decays to zero as k tends to infinity. For a given k,

a small value of Pr
{∥

∥xk− xNE

∥

∥

2
> r
}

indicates that xk approaches the NE at a higher speed compared to a

large value of Pr
{∥

∥xk− xNE

∥

∥

2
> r
}

. The next theorem provides an upper bound on the probability that xk

lies outside B(xNE,r).

Theorem 8. [4] Consider the uniform quantization scheme Du with the quantization step δ satisfying (24).

Then, the probability that xk lies outside B(xNE,r) with r > θ is upper bounded as

Pr
{

‖xk− xNE‖2 > r
}

≤min

(

1,e
− r−θ

αk E

[

e‖x0−xNE‖2

]

)

. (25)

Theorem 8 provides an upper bound on the probability that xk lies outside of the ball radius r around the

NE at a given time. According to Theorem 8, this probability decays to zero at least double exponentially

with k. Also, the decay rate of this probability depends on the contraction constant α . As α becomes small,

the distance between agents’ actions and the NE decays faster. Hence, the probability that xk lies outside

B(xNE,r) decays faster to zero, and xk with high probability lies inside B(xNE,r). The term E

[

e‖x0−xNE‖2

]

in (25) indicates the effect of the distribution of x0 on Pr
{∥

∥xk− xNE

∥

∥

2
> r
}

. That is, when the distribution

of x0 is more concentrated around the NE, we expect xk to approach the NE at a faster speed. Note that for a

given k, Pr
{∥

∥xk− xNE

∥

∥

2
> r
}

is a non-increasing function of r. That is, xk lies outside B(xNE,r) with high

probability as r becomes small. This behavior is consistent with the upper bound in Theorem 8.

One can use the fact that
∥

∥x0− xNE

∥

∥

2
≤ d to obtain an upper bound on Pr

{∥

∥xk− xNE

∥

∥

2
> r
}

which is

independent of x0 and xNE. This result is stated in the next corollary.

Corollary 4. The probability that xk lies outside B(xNE,r) can be upper bounded as

Pr
{

‖xk− xNE‖2 > r
}

≤min

(

1,e
d− r−θ

αk

)

. (26)

Finally, the upper bound in Corollary 4 can be used to obtain an upper bound on the number of time-steps

required for xk to lie in B(xNE,r) with a given certainty level. Let Np be the number of time-steps required

for xk to lie in B(xNE,r) with the probability at least equal to p. Then, using (26), Np can be upper bounded

by the smallest positive integer satisfying

d− (r−θ)≤ αk log(1− p) .

Theorem 8 and Corollary 4 can be used to obtain bounds on the required number of quantization levels to

guarantee that the agents’ actions at iteration k lie inside a ball of radius r around the NE with a given prob-

ability. In addition, Theorem 7 and Corollary 3 give rise to bounds on the required number of quantization

levels to guarantee an average settling time. Finally, Theorem 6 provides guidelines on the required average

aggregate data rate for achieving a desired speed of exponential convergence to the NE.
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3.2.3 An Adaptive EA Quantization Scheme

Based on the previous analysis of the uniform quantization scheme Du, this subsection presents an adaptive

EA quantization scheme under which the ES algorithm converges to the NE. This quantization scheme is

denoted as Da. Later, in the numerical result section, the error decay exponent of Da is studied. Recall that,

the NE belongs to the region R with the diameter d. The basic idea behind the adaptive quantization scheme

Da is to reduce the size of the known region around the NE in each time-step.

Let Rk denote the region which the NE belongs to at iteration k under the quantization scheme Da. The

quantization scheme Da is designed such that the diameter of Rk converges to zero as k tends to infinity.

Under the quantization scheme Da, initially, the intersection of action space of each agent with Q(xc,3d/2)
is quantized with the quantization step δ0 which satisfies the following inequality

sup
k

µk

(

δ0

√

∑
i

Φ2
i +

1

2
δ 2

0

(

M

√

∑
i

Ψ 2
i +

√

∑
i

η2
i

))

≤ α̂d, (27)

where α̂ is a constant arbitrarily selected from the interval (0,1−α). It is straightforward to show that the

distance between x1 and the NE under Da can be upper bounded as

‖x1− xNE‖2 ≤ α ‖x0− xNE‖2 + sup
k

µk

(

δ0

√

∑
i

Φ2
i +

1

2
δ 2

0

(

M

√

∑
i

Ψ 2
i +

√

∑
i

η2
i

))

≤ (α + α̂)d,

which implies that the NE belongs to the ball of radius (α + α̂)d around x1. In the second time-step,

Q(x1,(α + α̂)d) ∩ Q(xc,3d/2) is considered as R1 and the intersection of each agent’s action space

with the R1 is quantized. Similarly, at iteration k, k ≥ 1, we have Rk = Q
(

xk,dk

)

∩Q(xc,3d/2) where

di = (α + α̂)di−1 with d0 = d. Then, the intersection of action space of each agent with Rk is quantized.

Also, the quantization step at iteration k, δk, is chosen such that the following inequality is satisfied

sup
k

µk

(

δk

√

∑
i

Φ2
i +

1

2
δ 2

k

(

M

√

∑
i

Ψ 2
i +

√

∑
i

η2
i

))

≤ α̂dk, (28)

Since dk converges to zero as k tends to infinity, the actions of agents and their quantized versions, under the

quantization scheme Da, converge to the NE as k tends to infinity which implies that Da is an EA quantization

scheme. Algorithm 1 shows the different steps of the adaptive quantization scheme Da.

3.3 Numerical Results

This section presents a set of numerical results for a non-cooperative game with 5 agents seeking to maximize

their utility functions. The utility function of i-th agent is given by

Ui

(

xi,x−i
)

=
tii

2

(

xi
)2

+ xi

(

∑
j 6=i

ti jx
j− li

)

, (29)
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Algorithm 1 The adaptive quantization scheme Da

1: k← 0. (k is the time index.)

2: dk← d. (d and dk are the radii of R and Rk, respectively.)

3: Set δk as the solution of (27). (δk is the quantization step at iteration k.)

4: Quantize the intersection of action space of each agent with the Q(xc,3d/2).
5: repeat

6: Update the actions of agents.

7: k← k+1.

8: dk← (α + α̂)dk−1.

9: Choose δk such that (28) is satisfied.

10: Quantize the intersection of action space of each agent with Q
(

xk,dk

)

∩Q(xc,3d/2).
11: until The ES algorithm converges to the NE.

where tii < 0 for all i and ti j, li ∈R. Utility functions of the form (29) arise in many engineering applications

such as analyzing the bidding behavior of a group of generators competing for maximizing their profits in

an electricity market, e.g., see [16]. Let T be an M-by-M matrix with the (i, j)-th entry equal to ti j. Assume

that T is negative definite. Since T is invertible, it can be easily verified, using the Karush-Kuhn-Tucker

conditions, that the quadratic game with the utility functions (29) admits a unique Nash equilibrium. For this

quadratic game, the ES algorithm under perfect communication condition can be written as

xk+1 = (I +µT )xk−µ l,

where l = [l1, · · · , lM]⊤. The step size µ is selected such that the spectral radius of I+µT is strictly less than

one. In the numerical results, it is assumed that the NE belongs to a hypercube R, whose side length is equal

to 10√
5
. Additionally, the vector of initial actions of agents, x0, is assumed to be uniformly distributed on R.

Fig. 2 illustrates the expected time required for xk to settle inside B(xNE,r) as a function of r for different

quantization schemes and different values of average aggregate data rates RD . In this figure, θ , d and α are

set to 10−2, 10 and 0.46, respectively. As r becomes large, the ES algorithm under both Du and Da requires

less time to settle inside B(xNE,r), and as a result, the expected time, under both Du and Da, decreases as

r becomes large. As shown in Fig. 2, the expected time under the fixed quantization scheme Du is limited

by the upper bound provided by Theorem 7. According Fig. 2, the ES algorithm under the EA quantization

scheme Da, on average, requires less time to settle inside B(xNE,r) compared to the fixed quantization

scheme Du. The fast convergence of the ES algorithm under Da is due to the flexible structure of the EA

quantization scheme Da.

In Fig. 2, the ES algorithm under Du with coarse quantization scheme RD = 25 cannot settle inside the ball

B(xNE,r) when r is small which is due to the large amount of distortion caused by the coarse quantization

scheme. However, as r becomes large, the ES algorithm under the coarse quantization scheme settles inside

the ball B(xNE,r) faster than the fine quantization scheme RD = 60. Note that any quantization scheme

introduces an extra displacement to the agents’ action at each time-step. A coarse quantization scheme

causes a bigger displacement, compared to a fine quantization scheme, which results in a lower expected

time to settle inside B(xNE,r) (when r is large enough) .
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Fig. 2 The average time required for the ES algorithm to settle in a ball of radius r around the NE for the fixed and adaptive

quantizers as a function of r.

Fig. 3 demonstrates the behavior of log-mean-square-error-norm divided by k, i.e., 1
k

logE
[

‖εk‖2
2

]

, under

the adaptive quantizer Da as a function of the number of time-steps. As Fig. 3 shows 1
k

logE
[

‖εk‖2
2

]

stays

above −4.2318, the predicted lower bound by the Theorem 6, as k becomes large.

4 Conclusion

This chapter presented a set of results on the convergence behavior of a quantized primal-dual (PD) algo-

rithm as well as a gradient-based Nash seeking algorithm under quantized inter-agent communications. First,

using the information-theoretic notion of entropy power, universal bounds are derived on the fastest speed

of exponential mean square convergence of PD, primal and dual variables to the optimal solution under op-

timum achieving quantization schemes. These results highlight the universal trade-offs between the speed of

convergence of the quantized PD algorithm, data rate under the quantization, objective functions of agents,

the number of agents, and the number of constraints. Next, universal lower bounds are established on the

mean square distance of PD, primal and dual variables from the optimal solution of the NUM problem for

any finite time index.

Subsequently, the impact of quantized inter-agent communications on the convergence behavior of

the gradient-based Nash equilibrium seeking (ES) algorithm in non-cooperative games is studied. The
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Fig. 3 log-mean-square-error-norm divided by k under the adaptive quantization scheme Da as a function of k.

information-theoretic notion of entropy power helped establishing a universal lower bound on the rate of

exponential mean square convergence of such algorithms, assuming equilibrium-achieving quantizers. This

lower bound signifies the impact of inter-agent communication data rates on the convergence speed of the

ES algorithm to the Nash equilibrium (NE). Next, the transient behavior of the ES algorithm under quantized

message passing among agents was examined. To this end, an upper bound is derived on the expected time

required for the ES algorithm to settle inside a ball centered at the NE under a uniform quantization scheme.

Moreover, an upper bound is obtained on the probability that agents’ actions at a given time lie outside a ball

around the Nash equilibrium. It is worth noting that these last two results only concern the behavior of the

ES algorithm until it reaches a neighborhood of the Nash equilibrium, and do not make any assumption on

the convergence of the ES algorithm.
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Appendix

Proof of Theorem 1

This appendix presents the main steps of the proof of Theorem 1. To this end, first, the notion of conditional

differential entropy power of a random vector is defined. Then, the notion of entropy power facilitates es-

tablishing a universal lower bound on the DDE of the PD variables. The differential entropy power of the

random vector z ∈ R
N+M conditioned on the event A = a, denoted by N [ z|A = a], is defined as

N [ z|A = a] =
1

2πe
e

2
M+N h[ z|A=a],

where h [ z|A = a] is the conditional differential entropy of z given A = a defined as

h [ z|A = a] =−
∫

log(p( z|A = a)) p( z|A = a)dz,

where p( z|A = a) is the conditional distribution of z given A = a. Using the entropy maximizing property

of Gaussian distributions, the conditional entropy power of z given A = a can be upper bounded [1] as

N [ z|A = a]≤ e1/(M+N)−1
E

[

‖z‖2
2

∣

∣

∣A = a
]

, (30)

where E [ z|A = a] is conditional expectation of z given A = a. Let EA [N [ z|A = a]] denote the average con-

ditional entropy power of z given A = a. Using (30), EA [N [ z|A = a]] can be upper bounded as

EA [N [ z|A]]≤ e1/(M+N)−1
E

[

‖z‖2
2

]

. (31)

Next, the inequality (31) is used to establish the universal lower bound on the DDE of the PD variables un-

der OA quantization schemes. To this end, let Dk−1 =
{

Q̂n = q̂n

}k−1

n=0
where Q̂n =

[

Q̂x
1,n, · · · , Q̂x

M,n, Q̂
λ
1,n, · · · , Q̂λ

N,n

]

and q̂n is a possible realization of Q̂n. Using (31), E
[

‖εk‖2
2

]

can be lower bounded as e
1− 1

M+N

2πe
e

2
M+N E[h[εk|Dk−1 ]]

E

[

‖εk‖2
2

]

≥ e1− 1
M+N E [N [εk|Dk−1]]

(∗)
≥ e1− 1

M+N

2πe
e

2
M+N E[h[ εk|Dk−1]], (32)

where (∗) is obtained using the Jensen inequality. The term h [εk|Dk−1] on the right hand side of (32) can

be expanded as

h [εk|Dk−1] = h [yk− y⋆|Dk−1]

(∗)
= h [yk|Dk−1] , (33)

where (∗) follows from the translation invariance property of differential entropy as y⋆ is a constant vector

(see [17] Theorem 8.6.3 page 253).



Impact of Quantized Inter-agent Communications on Game-Theoretic and Distributed Optimization Algorithms 25

The next lemma establishes a useful expression between h [yn|Dk−1] and h
[

yn−1

∣

∣Dk−1

]

for n≤ k, which

is used to further expand h [yk|Dk−1].

Lemma 1. For n≤ k, h [yn|Dk−1] can be expanded as

h [yn|Dk−1] = h
[

yn−1

∣

∣Dk−1

]

+E

[

M

∑
j=1

log

(

1+µn−1
d2

dx j2
U j

(

x
j
n−1

)

)∣

∣

∣

∣

Dk−1

]

(34)

Proof. Let x̃i
n = xi

n + µn

(

d
dxi Ui

(

xi
n

)

)

and x̃n =
[

x̃i
1, · · · , x̃i

M

]⊤
. Let ỹn be the vector concatenation of x̃n and

λ n. This lemma is proved in two steps. First, it is shown that the conditional differential entropy of yn given

Dk is equal to that of ỹn−1 given Dk (see (35)). Next, a relation between the conditional differential entropy

of ỹn−1 given Dk and that of yn−1 given Dk is established. Note that, h [yn|Dk−1] can be written as

h [yn|Dk−1] = h [xn,λ n|Dk−1]
∗
= h [ x̃n−1,λ n−1|Dk−1]

= h
[

ỹn−1

∣

∣Dk−1

]

(35)

where (∗) follows from the translation invariance property of the differential entropy and the fact that Qk−1

is fixed given Dk−1 =
{

Q̂n = q̂n

}k−1

n=0
. Next, we derive an expression for the probability density function

(PDF) of ỹn in terms of the PDF of yn. Let pỹn
(y |Dk−1 ) and pyn

(y |Dk−1 ) to denote the PDFs of ỹn and yn,

respectively, conditioned on Dk−1. Let F (·) represent the mapping between ỹn and yn, i.e., ỹn = F (yn). Note

that 0 < 1+µn
d2

dxi2
Ui

(

xi
)

< 1 since 0 < µn < mini
1

|Umin
i | which implies that the mapping F (·) is invertible.

Thus, the change-of-variables formula for invertible diffeomorphisms of random vectors (see e.g., (4.63) in

[18]) can be applied to write

pỹn−1
(y |Dk−1 ) =

1

detJF

[

F−1(y)
] pyn−1

(

F−1 (y) |Dk−1

)

,

(36)

where JF [x] is Jacobian of F (x) evaluated at x. Using (36), the conditional entropy of ỹn−1 given Dk−1 can

be written as

h
[

ỹn−1

∣

∣Dk−1

]

=
∫

log
(

detJF

[

F−1 (y)
]) 1

detJF

[

F−1 (y)
] pyn−1

(

F−1 (y) |Dk−1

)

dy

−
∫

log
(

pyn−1

(

F−1 (y) |Dk−1

)) 1

detJF

[

F−1 (y)
] pyn−1

(

F−1 (y) |Dk−1

)

dy,

(∗)
=
∫

log(detJF [z]) pyn−1
(z |Dk−1 )dz−

∫

log
(

pyn−1
(z |Dk−1 )

)

pyn−1
(z |Dk−1 )dz,

=
M

∑
j=1

E

[

log

(

1+µn−1
d2

dx j2
U j

(

x
j
n−1

)

)∣

∣

∣

∣

Dk−1

]

+h
[

yn−1

∣

∣Dk−1

]

, (37)

where (∗) follows from the change of variable z = F−1 (x).

Using Lemma 1, h [yk|Dk−1] can be further expanded as
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h [yk|Dk−1] = h [y0|Dk−1]+
M

∑
j=1

k−1

∑
n=0

E

[

log

(

1+µn

d2

dx j2
U j

(

x j
n

)

)∣

∣

∣

∣

Dk−1

]

(38)

Using (38), E [h [yk|Dk−1]] can be written as

E [h [yk|Dk−1]] =
M

∑
j=1

k−1

∑
n=0

E

[

log

(

1+µn

d2

dx j2
U j

(

x j
n

)

)]

+E [h [y0|Dk−1]] , (39)

The following lemma, adapted from [1], establishes a lower bound on E [h [yk|Dk−1]]:

Lemma 2. The average conditional entropy of y0 given Dk−1, i.e., E [h [y0|Dk−1]], can be lower bounded as

E [h [y0|Dk−1]]≥h [y0]−
k−1

∑
t=0

((

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

+
N

∑
j=1

log

∣

∣

∣
A

λ
j,t

∣

∣

∣

)

.

Proof. Follows directly from the first inequality in appendix C in [1]; alternatively, it can be derived from

(8.48) and (8.89) in [17].

Applying Lemma 2 to (39) yields

E [h [yk|Dk−1]]≥
M

∑
j=1

k−1

∑
n=0

E

[

log

(

1+µn

d2

dx j2
U j

(

x j
n

)

)]

+h [y0]−
k−1

∑
t=0

((

M

∑
i=1

log
∣

∣A
x

i,t

∣

∣

)

+
N

∑
j=1

log

∣

∣

∣
A

λ
j,t

∣

∣

∣

)

,

(40)

Since x0 and λ 0 are independent, the differential entropy of y0 can be written as h [y0] = h [x0]+h [λ 0] which

implies that y0 has finite differential entropy. Using (32), (33), (40) and the fact that y0 has a finite entropy,

the DDE can be lower bounded as

liminf
k−→∞

1

k
logE

[

‖εk‖2
2

]

≥ 2

M+N

(

liminf
k−→∞

M

∑
j=1

1

k

k−1

∑
n=0

E

[

log

(

1+µn

d2

dx j2
U j

(

x j
n

)

)]

−RQ

)

. (41)

The next lemma presents the asymptotic behavior of the first term in the right hand side of equation (41).

Lemma 3. [10] Consider the primal-dual update rule (6) under an OA quantization scheme. Then,

lim
k−→∞

M

∑
j=1

1

k

k−1

∑
n=0

E

[

log

(

1+µn

d2

dx j2
U j

(

x j
n

)

)]

=
M

∑
j=1

log

(

1+µ⋆ d2

dx j2
U j

(

x j⋆
)

)

.

Applying Lemma 3 to (41) yields

liminf
k→∞

1

k
logE

[

‖εk‖2
2

]

≥ 2

N +M

(

m

∑
i=1

log

(

1+µ⋆ d2

dxi2
Ui

(

xi⋆
)

)

−RQ

)

. (42)

which completes the proof.



Impact of Quantized Inter-agent Communications on Game-Theoretic and Distributed Optimization Algorithms 27

References

1. G. N. Nair and R. J. Evans, “Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates,” SIAM Journal

on Control and Optimization, vol. 43, no. 2, pp. 413–436, 2004.

2. G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback Control Under Data Rate Constraints: An Overview,”

Proceedings of the IEEE, vol. 95, no. 1, pp. 108–137, Jan 2007.

3. E. Nekouei, T. Alpcan, G. Nair, and R. J. Evans, “Convergence Analysis of Quantized Primal-dual Algorithms in Network

Utility Maximization Problems,” IEEE Transactions on Control of Network Systems, vol. PP, no. 99, pp. 1–1, 2016.

4. E. Nekouei, G. N. Nair, and T. Alpcan, “Performance Analysis of Gradient-Based Nash Seeking Algorithms Under Quan-

tization,” IEEE Transactions on Automatic Control, vol. 61, no. 12, pp. 3771–3783, Dec 2016.

5. F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices, proportional fairness and

stability,” in Journal of the Operational Research Society, vol. 49, 1998.

6. S. Shakkottai and R. Srikant, “Network Optimization and Control,” Found. Trends Netw., vol. 2, no. 3, pp. 271–379, Jan

2007.
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