21 research outputs found
Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157
Context. Several new ultrahigh-energy (UHE) γ-ray sources have recently been discovered by the Large High Altitude Air Shower Observatory (LHAASO) collaboration. These represent a step forward in the search for the so-called Galactic PeVatrons, the enigmatic sources of the Galactic cosmic rays up to PeV energies. However, it has been shown that multi-TeV γ-ray emission does not necessarily prove the existence of a hadronic accelerator in the source; indeed this emission could also be explained as inverse Compton scattering from electrons in a radiation-dominated environment. A clear distinction between the two major emission mechanisms would only be made possible by taking into account multi-wavelength data and detailed morphology of the source.
Aims. We aim to understand the nature of the unidentified source LHAASO J2108+5157, which is one of the few known UHE sources with no very high-energy (VHE) counterpart.
Methods. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good-quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its high-energy (HE) counterpart 4FGL J2108.0+5155. We used naima and jetset software packages to examine the leptonic and hadronic scenario of the multi-wavelength emission of the source.
Results. We found an excess (3.7σ) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2σ) of hard emission, which can be described with a single power law with a photon index of Γ = 1.6 ± 0.2 the range of 0.3 − 100 TeV. We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4σ and a photon index of Γ = 1.9 ± 0.2, which is not spatially correlated with LHAASO J2108+5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0+5155.
Conclusions. The LST-1 and LHAASO observations can be explained as inverse Compton-dominated leptonic emission of relativistic electrons with a cutoff energy of 100−30+70 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a PWN or a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a Geminga-like pulsar, which would be able to power the VHE-UHE emission. Nevertheless, the lack of a pulsar in the neighborhood of the UHE source is a challenge to the PWN/TeV-halo scenario. The UHE γ rays can also be explained as π0 decay-dominated hadronic emission due to interaction of relativistic protons with one of the two known molecular clouds in the direction of the source. Indeed, the hard spectrum in the LST-1 band is compatible with protons escaping a shock around a middle-aged SNR because of their high low-energy cut-off, but the origin of the HE γ-ray emission remains an open question
Status and results of the prototype LST of CTA
The Large-Sized Telescopes (LSTs) of Cherenkov Telescope Array (CTA) are designed for gamma-ray studies focusing on low energy threshold, high flux sensitivity, rapid telescope repositioning speed and a large field of view. Once the CTA array is complete, the LSTs will be dominating the CTA performance between 20 GeV and 150 GeV. During most of the CTA Observatory construction phase, however, the LSTs will be dominating the array performance until several TeVs. In this presentation we will report on the status of the LST-1 telescope inaugurated in La Palma, Canary islands, Spain in 2018. We will show the progress of the telescope commissioning, compare the expectations with the achieved performance, and give a glance of the first physics results
Reconstruction of extensive air shower images of the Large Size Telescope prototype of CTA using a novel likelihood technique
Ground-based gamma-ray astronomy aims at reconstructing the energy and direction of gamma rays from the extensive air showers they initiate in the atmosphere. Imaging Atmospheric Cherenkov Telescopes (IACT) collect the Cherenkov light induced by secondary charged particles in extensive air showers (EAS), creating an image of the shower in a camera positioned in the focal plane of optical systems. This image is used to evaluate the type, energy and arrival direction of the primary particle that initiated the shower. This contribution shows the results of a novel reconstruction method based on likelihood maximization. The novelty with respect to previous likelihood reconstruction methods lies in the definition of a likelihood per single camera pixel, accounting not only for the total measured charge, but also for its development over time. This leads to more precise reconstruction of shower images. The method is applied to observations of the Crab Nebula acquired with the Large Size Telescope prototype (LST-1) deployed at the northern site of the Cherenkov Telescope Array
Analysis of the Cherenkov Telescope Array first Large Size Telescope real data using convolutional neural networks
The Cherenkov Telescope Array (CTA) is the future ground-based gamma-ray observatory and will be composed of two arrays of imaging atmospheric Cherenkov telescopes (IACTs) located in the Northern and Southern hemispheres respectively. The first CTA prototype telescope built on-site, the Large-Sized Telescope (LST-1), is under commissioning in La Palma and has already taken data on numerous known sources. IACTs detect the faint flash of Cherenkov light indirectly produced after a very energetic gamma-ray photon has interacted with the atmosphere and generated an atmospheric shower. Reconstruction of the characteristics of the primary photons is usually done using a parameterization up to the third order of the light distribution of the images. In order to go beyond this classical method, new approaches are being developed using state-of-the-art methods based on convolutional neural networks (CNN) to reconstruct the properties of each event (incoming direction, energy and particle type) directly from the telescope images. While promising, these methods are notoriously difficult to apply to real data due to differences (such as different levels of night sky background) between Monte Carlo (MC) data used to train the network and real data. The GammaLearn project, based on these CNN approaches, has already shown an increase in sensitivity on MC simulations for LST-1 as well as a lower energy threshold. This work applies the GammaLearn network to real data acquired by LST-1 and compares the results to the classical approach that uses random forests trained on extracted image parameters. The improvements on the background rejection, event direction, and energy reconstruction are discussed in this contribution
Development of an advanced SiPM camera for the Large Size Telescope of the Cherenkov TelescopeArray Observatory
Silicon photomultipliers (SiPMs) have become the baseline choice for cameras of the small-sized telescopes (SSTs) of the Cherenkov Telescope Array (CTA).
On the other hand, SiPMs are relatively new to the field and covering large surfaces and operating at high data rates still are challenges to outperform photomultipliers (PMTs). The higher sensitivity in the near infra-red and longer signals compared to PMTs result in higher night sky background rate for SiPMs. However, the robustness of the SiPMs represents a unique opportunity to ensure long-term operation with low maintenance and better duty cycle than PMTs. The proposed camera for large size telescopes will feature 0.05 degree pixels, low power and fast front-end electronics and a fully digital readout. In this work, we present the status of dedicated simulations and data analysis for the performance estimation. The design features and the different strategies identified, so far, to tackle the demanding requirements and the improved performance are described
Commissioning of the camera of the first Large Size Telescope of the Cherenkov Telescope Array
The first Large Size Telescope (LST-1) of the Cherenkov Telescope Array has been operational since October 2018 at La Palma, Spain. We report on the results obtained during the camera commissioning. The noise level of the readout is determined as a 0.2 p.e. level. The gain of PMTs are well equalized within 2% variation, using the calibration flash system. The effect of the night sky background on the signal readout noise as well as the PMT gain estimation are also well evaluated. Trigger thresholds are optimized for the lowest possible gamma-ray energy threshold and the trigger distribution synchronization has been achieved within 1 ns precision. Automatic rate control realizes the stable observation with 1.5% rate variation over 3 hours. The performance of the novel DAQ system demonstrates a less than 10% dead time for 15 kHz trigger rate even with sophisticated online data correction
Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array
CTA (Cherenkov Telescope Array) is the next generation ground-based
observatory for gamma-ray astronomy at very-high energies. The Large-Sized
Telescope prototype (\LST{}) is located at the Northern site of CTA, on the
Canary Island of La Palma. LSTs are designed to provide optimal performance in
the lowest part of the energy range covered by CTA, down to GeV.
\LST{} started performing astronomical observations in November 2019, during
its commissioning phase, and it has been taking data since then. We present the
first \LST{} observations of the Crab Nebula, the standard candle of very-high
energy gamma-ray astronomy, and use them, together with simulations, to assess
the basic performance parameters of the telescope. The data sample consists of
around 36 hours of observations at low zenith angles collected between November
2020 and March 2022. \LST{} has reached the expected performance during its
commissioning period - only a minor adjustment of the preexisting simulations
was needed to match the telescope behavior. The energy threshold at trigger
level is estimated to be around 20 GeV, rising to GeV after data
analysis. Performance parameters depend strongly on energy, and on the strength
of the gamma-ray selection cuts in the analysis: angular resolution ranges from
0.12 to 0.40 degrees, and energy resolution from 15 to 50\%. Flux sensitivity
is around 1.1\% of the Crab Nebula flux above 250 GeV for a 50-h observation
(12\% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV
range) and the light curve obtained for the Crab Nebula agree with previous
measurements, considering statistical and systematic uncertainties. A clear
periodic signal is also detected from the pulsar at the center of the Nebula.Comment: Submitted to Ap
A detailed study of the very-high-energy Crab pulsar emission with the LST-1
Context: There are currently three pulsars firmly detected by imaging
atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies,
challenging models of very-high-energy (VHE) emission in pulsars. More precise
observations are needed to better characterize pulsar emission at these
energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be
part of the Cherenkov Telescope Array Observatory (CTAO). Its improved
performance over previous IACTs makes it well suited for studying pulsars.
Aims: To study the Crab pulsar emission with the LST-1, improving and
complementing the results from other telescopes. These observations can also be
used to characterize the potential of the LST-1 to study other pulsars and
detect new ones. Methods: We analyzed a total of 103 hours of gamma-ray
observations of the Crab pulsar conducted with the LST-1 in the period from
September 2020 to January 2023. The observations were carried out at zenith
angles less than 50 degrees. A new analysis of the Fermi-LAT data was also
performed, including 14 years of observations. Results: The Crab pulsar
phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed
with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The
pulsed emission is detected with a significance of 15.2. The two
characteristic emission peaks of the Crab pulsar are clearly detected
(>10), as well as the so-called bridge emission (5.7). We find
that both peaks are well described by power laws, with spectral indices of
3.44 and 3.03 respectively. The joint analysis of Fermi-LAT and
LST-1 data shows a good agreement between both instruments in the overlapping
energy range. The detailed results obtained in the first observations of the
Crab pulsar with LST-1 show the potential that CTAO will have to study this
type of sources.Comment: Accepted by A&
A detailed study of the very-high-energy Crab pulsar emission with the LST-1
Context: There are currently three pulsars firmly detected by imaging atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies, challenging models of very-high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be part of the Cherenkov Telescope Array Observatory (CTAO). Its improved performance over previous IACTs makes it well suited for studying pulsars. Aims: To study the Crab pulsar emission with the LST-1, improving and complementing the results from other telescopes. These observations can also be used to characterize the potential of the LST-1 to study other pulsars and detect new ones. Methods: We analyzed a total of 103 hours of gamma-ray observations of the Crab pulsar conducted with the LST-1 in the period from September 2020 to January 2023. The observations were carried out at zenith angles less than 50 degrees. A new analysis of the Fermi-LAT data was also performed, including 14 years of observations. Results: The Crab pulsar phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The pulsed emission is detected with a significance of 15.2. The two characteristic emission peaks of the Crab pulsar are clearly detected (>10), as well as the so-called bridge emission (5.7). We find that both peaks are well described by power laws, with spectral indices of 3.44 and 3.03 respectively. The joint analysis of Fermi-LAT and LST-1 data shows a good agreement between both instruments in the overlapping energy range. The detailed results obtained in the first observations of the Crab pulsar with LST-1 show the potential that CTAO will have to study this type of sources
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations.ISSN:1824-803
