137 research outputs found

    Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    Get PDF
    The β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the β1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of β1-subunit protein, but not of the α1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent. © 1999 Cancer Research Campaig

    Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo

    Get PDF
    Background Tumour Carbonic Anhydrase IX (CAIX), a hypoxia-inducible tumour-associated cell surface enzyme, is thought to acidify the tumour microenvironment by hydrating CO2 to form protons and bicarbonate, but there is no definitive evidence for this in solid tumours in vivo. Methods We used 1H magnetic resonance spectroscopic imaging (MRSI) of the extracellular pH probe imidazolyl succinic acid (ISUCA) to measure and spatially map extracellular pH in HCT116 tumours transfected to express CAIX and empty vector controls in SCID mice. We also measured intracellular pH in situ with 31P MRS and measured lactate in freeze-clamped tumours. Results CAIX expressing tumours had 0.15 pH-unit lower median extracellular pH than control tumours (pH 6.71 tumour vs pH 6.86 control, P = 0.01). Importantly, CAIX expression imposed an upper limit for tumour extracellular pH at 6.93. Despite the increased lactate concentration in CAIX-expressing tumours, 31P MRS showed no difference in intracellular pH, suggesting that CAIX acidifies only the tumour extracellular space. Conclusions CAIX acidifies the tumour microenvironment, and also provides an extracellular pH control mechanism. We propose that CAIX thus acts as an extracellular pH-stat, maintaining an acidic tumour extracellular pH that is tolerated by cancer cells and favours invasion and metastasis.We are grateful for the support of CRUK [grant number C14303/A17197], the Breast Cancer Research Foundation, the Royal Society, Worldwide Cancer Research and the European Research Council [SURVIVE: 723397]. JP-T and SC received support from the Spanish Ministry of Economy and Competitiveness SAF2014-23622

    Cancer stem cell metabolism: A potential target for cancer therapy

    Get PDF
    © 2016 The Author(s). Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy

    Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment

    Get PDF

    Drug-induced amino acid deprivation as strategy for cancer therapy

    Full text link

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation

    Get PDF
    Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived ^(V600E)BRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response
    corecore