2,814 research outputs found

    External sources of clean technology: evidence from the clean development mechanism

    Get PDF
    New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model

    Introduction to the functional RG and applications to gauge theories

    Get PDF
    These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Trento, Ital

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes

    Get PDF
    We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants.University of Wisconsin--Milwaukee (SURF (Salary for Undergraduate Research Fellows) Award)National Science Foundation (U.S.) (grant DMS-016214

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Development and Initial Validation of the PEG, a Three-item Scale Assessing Pain Intensity and Interference

    Get PDF
    Inadequate pain assessment is a barrier to appropriate pain management, but single-item “pain screening” provides limited information about chronic pain. Multidimensional pain measures such as the Brief Pain Inventory (BPI) are widely used in pain specialty and research settings, but are impractical for primary care. A brief and straightforward multidimensional pain measure could potentially improve initial assessment and follow-up of chronic pain in primary care. To develop an ultra-brief pain measure derived from the BPI. Development of a shortened three-item pain measure and initial assessment of its reliability, validity, and responsiveness. We used data from 1) a longitudinal study of 500 primary care patients with chronic pain and 2) a cross-sectional study of 646 veterans recruited from ambulatory care. Selected items assess average pain intensity (P), interference with enjoyment of life (E), and interference with general activity (G). Reliability of the three-item scale (PEG) was α = 0.73 and 0.89 in the two study samples. Overall, construct validity of the PEG was good for various pain-specific measures (r = 0.60–0.89 in Study 1 and r = 0.77–0.95 in Study 2), and comparable to that of the BPI. The PEG was sensitive to change and differentiated between patients with and without pain improvement at 6 months. We provide strong initial evidence for reliability, construct validity, and responsiveness of the PEG among primary care and other ambulatory clinic patients. The PEG may be a practical and useful tool to improve assessment and monitoring of chronic pain in primary care

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Magnetic Coupling in the Quiet Solar Atmosphere

    Full text link
    Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfv\'en and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the magnetic field also couples to the radiation field, which leads to radiative flux channeling and increased anisotropy in the radiation field. It is shown how faculae can be understood in terms of this effect. The article starts with an introduction to the magnetic field of the quiet Sun in the light of new results from the Hinode space observatory and with a brief survey of measurements of the turbulent magnetic field with the help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Enhancing Federated Cloud Management with an Integrated Service Monitoring Approach

    Get PDF
    Cloud Computing enables the construction and the provisioning of virtualized service-based applications in a simple and cost effective outsourcing to dynamic service environments. Cloud Federations envisage a distributed, heterogeneous environment consisting of various cloud infrastructures by aggregating different IaaS provider capabilities coming from both the commercial and the academic area. In this paper, we introduce a federated cloud management solution that operates the federation through utilizing cloud-brokers for various IaaS providers. In order to enable an enhanced provider selection and inter-cloud service executions, an integrated monitoring approach is proposed which is capable of measuring the availability and reliability of the provisioned services in different providers. To this end, a minimal metric monitoring service has been designed and used together with a service monitoring solution to measure cloud performance. The transparent and cost effective operation on commercial clouds and the capability to simultaneously monitor both private and public clouds were the major design goals of this integrated cloud monitoring approach. Finally, the evaluation of our proposed solution is presented on different private IaaS systems participating in federations. © 2013 Springer Science+Business Media Dordrecht
    corecore