6,322 research outputs found
Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario
The success of early life-history stages is an environmentally sensitive bottleneck for many marine invertebrates. Responses of larvae to environmental stress may vary due to differences in maternal investment of energy stores and acclimatization/adaptation of a population to local environmental conditions. In this study, we compared two populations from sites with different environmental regimes (Moorea and Taiwan). We assessed the responses of Pocillopora damicornis larvae to two future co-occurring environmental stressors: elevated temperature and ocean acidification. Larvae from Taiwan were more sensitive to temperature, producing fewer energy-storage lipids under high temperature. In general, planulae in Moorea and Taiwan responded similarly to pCO(2). Additionally, corals in the study sites with different environments produced larvae with different initial traits, which may have shaped the different physiological responses observed. Notably, under ambient conditions, planulae in Taiwan increased their stores of wax ester and triacylglycerol in general over the first 24 h of their dispersal, whereas planulae from Moorea consumed energy-storage lipids in all cases. Comparisons of physiological responses of P. damicornis larvae to conditions of ocean acidification and warming between sites across the species\u27 biogeographic range illuminates the variety of physiological responses maintained within P. damicornis, which may enhance the overall persistence of this species in the light of global climate change
Niche inheritance: a cooperative pathway to enhance cancer cell fitness though ecosystem engineering
Cancer cells can be described as an invasive species that is able to
establish itself in a new environment. The concept of niche construction can be
utilized to describe the process by which cancer cells terraform their
environment, thereby engineering an ecosystem that promotes the genetic fitness
of the species. Ecological dispersion theory can then be utilized to describe
and model the steps and barriers involved in a successful diaspora as the
cancer cells leave the original host organ and migrate to new host organs to
successfully establish a new metastatic community. These ecological concepts
can be further utilized to define new diagnostic and therapeutic areas for
lethal cancers.Comment: 8 pages, 1 Table, 4 Figure
Legged Robots for Object Manipulation: A Review
Legged robots can have a unique role in manipulating objects in dynamic,
human-centric, or otherwise inaccessible environments. Although most legged
robotics research to date typically focuses on traversing these challenging
environments, many legged platform demonstrations have also included "moving an
object" as a way of doing tangible work. Legged robots can be designed to
manipulate a particular type of object (e.g., a cardboard box, a soccer ball,
or a larger piece of furniture), by themselves or collaboratively. The
objective of this review is to collect and learn from these examples, to both
organize the work done so far in the community and highlight interesting open
avenues for future work. This review categorizes existing works into four main
manipulation methods: object interactions without grasping, manipulation with
walking legs, dedicated non-locomotive arms, and legged teams. Each method has
different design and autonomy features, which are illustrated by available
examples in the literature. Based on a few simplifying assumptions, we further
provide quantitative comparisons for the range of possible relative sizes of
the manipulated object with respect to the robot. Taken together, these
examples suggest new directions for research in legged robot manipulation, such
as multifunctional limbs, terrain modeling, or learning-based control, to
support a number of new deployments in challenging indoor/outdoor scenarios in
warehouses/construction sites, preserved natural areas, and especially for home
robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical
Engineerin
An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011
Background: The prevalence of allergic rhinitis (AR) has increased worldwide in recent decades. This study was conducted to investigate the prevalence of self-reported AR and profiles of AR-related comorbidities in the adult population of China over time.
Methods: This study surveyed residents of 18 major cities in mainland China. Telephone interviews were conducted with study participants after sampling target telephone numbers by random digit dialing. The questions asked during telephone interviews were based on those included in validated questionnaires and focused on topics regarding AR, nonallergic rhinitis (NAR), acute/chronic rhinosinusitis (ARS/CRS), asthma, and atopic dermatitis (AD).
Results: During 2011, a total of 47216 telephone interviews were conducted, and the overall response rate was 77.5%. When compared with the AR prevalence in 11 cities surveyed in 2005, there was a significant increase in self-reported adult AR in eight of those cities (P<0.01). In 2011, the standardized prevalence of self-reported adult AR in the 18 cities was 17.6%. The concentration of SO2 was positively correlated with the prevalence of AR (r=0.504, P=0.033). A multiple regression model showed that the absolute change in household yearly income was significantly associated with the change in the prevalence of AR (R-2=0.68), after adjusting for PM10, SO2, NO2, temperature, and humidity. The overall prevalences of NAR, ARS, CRS, asthma, and AD in the general population were 16.4%, 5.4%, 2.1%, 5.8%, and 14%, respectively.
Conclusion: During a 6-year period, there was a significant increase in the prevalence of self-reported AR in the general Chinese adult population. The incidence of AR being accompanied by rhinosinusitis, asthma, or AD was significantly higher among individuals having self-reported AR compared with the general population
A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals.
A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals
A Brownian particle in a microscopic periodic potential
We study a model for a massive test particle in a microscopic periodic
potential and interacting with a reservoir of light particles. In the regime
considered, the fluctuations in the test particle's momentum resulting from
collisions typically outweigh the shifts in momentum generated by the periodic
force, and so the force is effectively a perturbative contribution. The
mathematical starting point is an idealized reduced dynamics for the test
particle given by a linear Boltzmann equation. In the limit that the mass ratio
of a single reservoir particle to the test particle tends to zero, we show that
there is convergence to the Ornstein-Uhlenbeck process under the standard
normalizations for the test particle variables. Our analysis is primarily
directed towards bounding the perturbative effect of the periodic potential on
the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications
of the conten
In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway.
BACKGROUND: Tuberculosis (TB) of the central nervous system (CNS) is characterized by extensive tissue inflammation, driven by molecules that cleave extracellular matrix such as matrix metalloproteinase (MMP)-1 and MMP-3. However, relatively little is known about the regulation of these MMPs in the CNS. METHODS: Using a cellular model of CNS TB, we stimulated a human microglial cell line (CHME3) with conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb). MMP-1 and MMP-3 secretion was detected using ELISAs confirmed with casein zymography or western blotting. Key results of a phospho-array profile that detects a wide range of kinase activity were confirmed with phospho-Western blotting. Chemical inhibition (SB203580) of microglial cells allowed investigation of expression and secretion of MMP-1 and MMP-3. Finally we used promoter reporter assays employing full length and MMP-3 promoter deletion constructs. Student's t-test was used for comparison of continuous variables and multiple intervention experiments were compared by one-way ANOVA with Tukey's correction for multiple pairwise comparisons. RESULTS: CoMTb up-regulated microglial MMP-1 and MMP-3 secretion in a dose- and time-dependent manner. The phospho-array profiling showed that the major increase in kinase activity due to CoMTb stimulation was in p38 mitogen activated protein kinase (MAPK), principally the α and γ subunits. p38 phosphorylation was detected at 15 minutes, with a second peak of activity at 120 minutes. High basal extracellular signal-regulated kinase activity was further increased by CoMTb. Secretion and expression of MMP-1 and MMP-3 were both p38 dependent. CoMTb stimulation of full length and MMP-3 promoter deletion constructs demonstrated up-regulation of activity in the wild type but a suppression site between -2183 and -1612 bp. CONCLUSIONS: Monocyte-microglial network-dependent MMP-1 and MMP-3 gene expression and secretion are dependent upon p38 MAPK in tuberculosis. p38 is therefore a potential target for adjuvant therapy in CNS TB
The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells
Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis.
<p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation.
<p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI.
<p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL
Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results
- …