132 research outputs found

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Can-Pain-a digital intervention to optimise cancer pain control in the community : development and feasibility testing

    Get PDF
    Purpose: To develop a novel digital intervention to optimise cancer pain control in the community. This paper describes intervention development, content/rationale and initial feasibility testing. Methods: Determinants of suboptimal cancer pain management were characterised through two systematic reviews; patient, caregiver and healthcare professional (HCP) interviews (n = 39); and two HCP focus groups (n = 12). Intervention mapping was used to translate results into theory-based content, creating the app β€œCan-Pain”. Patients with/without a linked caregiver, their general practitioners and community palliative care nurses were recruited to feasibility test Can-Pain over 4Β weeks. Results: Patients on strong opioids described challenges balancing pain levels with opioid intake, side effects and activities and communicating about pain management problems with HCPs. Can-Pain addresses these challenges through educational resources, contemporaneous short-acting opioid tracking and weekly patient-reported outcome monitoring. Novel aspects of Can-Pain include the use of contemporaneous breakthrough analgesic reports as a surrogate measure of pain control and measuring the level at which pain becomes bothersome to the individual. Patients were unwell due to advanced cancer, making recruitment to feasibility testing difficult. Two patients and one caregiver used Can-Pain for 4Β weeks, sharing weekly reports with four HCPs. Can-Pain highlighted unrecognised problems, promoted shared understanding about symptoms between patients and HCPs and supported shared decision-making. Conclusions: Preliminary testing suggests that Can-Pain is feasible and could promote patient-centred pain management. We will conduct further small-scale evaluations to inform a future randomised, stepped-wedge trial

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Therapeutic Benefit of Radial Optic Neurotomy in a Rat Model of Glaucoma

    Get PDF
    Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension

    Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain

    Get PDF
    It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development

    RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline

    Get PDF
    The purpose of this review article is to familiarize radiologists with the recently revised Response Evaluation Criteria in Solid Tumours (RECIST), used in many anticancer drug trials to assess response and progression rate. The most important modifications are: a reduction in the maximum number of target lesions from ten to five, with a maximum of two per organ, with a longest diameter of at least 10Β mm; in lymph nodes (LNs) the short axis rather than the long axis should be measured, with normal LN measuring <10Β mm, non-target LN β‰₯10Β mm but <15Β mm and target LN β‰₯15Β mm; osteolytic lesions with a soft tissue component and cystic tumours may serve as target lesions; an additional requirement for progressive disease (PD) of target lesions is not only a β‰₯20% increase in the sum of the longest diameter (SLD) from the nadir but also a β‰₯5Β mm absolute increase in the SLD (the other response categories of target lesion are unchanged); PD of non-target lesions can only be applied if the increase in non-target lesions is representative of change in overall tumour burden; detailed imaging guidelines. Alternative response criteria in patients with hepatocellular carcinoma and gastrointestinal stromal tumours are discussed

    Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis

    Get PDF
    Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5β€² to and within the MSRA gene were associated with MI (Pβ€Š=β€Š1.99Γ—10βˆ’5 to 1.08Γ—10βˆ’6; Bonferroni Pβ€Š=β€Š0.057 to 3.1Γ—10βˆ’3). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (ORβ€Š=β€Š0.72, 95% CI [0.53–0.98], Pβ€Š=β€Š0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (Pβ€Š=β€Š1.2Γ—10βˆ’4). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftrβˆ’/βˆ’ and Cftrβˆ’/βˆ’Msraβˆ’/βˆ’ mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution
    • …
    corecore