30,792 research outputs found

    Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    Full text link
    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-alpha (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice.Comment: 9 pages, 6 figures, 7 table

    A More Flavored Higgs boson in Supersymmetric models

    Get PDF
    A More flavored Higgs boson arises when the flavor structure encoded in SUSY extensions of the SM is transmited to the Higgs sector. The flavor-Higgs transmition mechanism can have a radiative or mixing origin, as it is illustrated with several examples, and can produce interesting Higgs signatures that can be probed at future high-energy colliders. Within the MSSM, the flavor mediation mechanism can be of radiative type, as it is realized trhough gaugino-slepton loops, which transmit the flavor structture of the soft-breaking sector to the Higgs bosons. In particular we focus on evaluating the contributions from the general trilinear terms to the lepton flavor violating Higgs (LFV) vertices. On the other hand, as an example of flavor mediation through mixing, we discuss an E_6 inspired multi-Higgs model, with an abelian flavor symmetry, where LFV as well as lepton flavor conserving Higgs effects are found to arise, though in this case at tree-level. We find that Tevatron and LHC can provide information on the flavor structure of these models through the detection of the LFV higgs mode h-> tau+mu, while NLC can perform high-precision measurements of the LFC mode h-> tau tau.Comment: 17 pages, 5 tables, 3 figures; corrected mistake in last section, results changed but conclusions remmai

    Mixed symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

    Full text link
    We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e. has much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematic obtaining the modes, considering the "small" component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows obtaining breather modes, which are also presented.Comment: 11 pages, 16 figure

    Testing models with non-minimal Higgs sector through the decay t->q+WZ

    Get PDF
    We study the contribution of charged Higgs boson to the rare decay of the top quark t->q+WZ (q=d,s,b) in models with Higgs sector that includes doublets and triplets. Higgs doublets are needed to couple charged Higgs with quarks, whereas the Higgs triplets are required to generate the non-standard vertex HWZ at tree-level. It is found that within a model that respect the custodial SU(2) symmetry and avoids flavour changing neutral currents by imposing discrete symmetries, the decay mode t->b+WZ, can reach a branching ratio of order 0.0178, whereas the decay modes t->(d,s)+WZ, can reach a similar branching ratio in models where flavour changing neutral currents are suppressed by flavour symmetries.Comment: Typeset using REVTEX and EPSF, 5 pag, 2 figure

    The Luminosity Function of Low-Redshift Abell Galaxy Clusters

    Full text link
    We present the results from a survey of 57 low-redshift Abell galaxy clusters to study the radial dependence of the luminosity function (LF). The dynamical radius of each cluster, r200, was estimated from the photometric measurement of cluster richness, Bgc. The shape of the LFs are found to correlate with radius such that the faint-end slope, alpha, is generally steeper on the cluster outskirts. The sum of two Schechter functions provides a more adequate fit to the composite LFs than a single Schechter function. LFs based on the selection of red and blue galaxies are bimodal in appearance. The red LFs are generally flat for -22 < M_Rc < -18, with a radius-dependent steepening of alpha for M_Rc > -18. The blue LFs contain a larger contribution from faint galaxies than the red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc > -21, with a weaker dependence on radius than the red LFs. The dispersion of M* was determined to be 0.31 mag, which is comparable to the median measurement uncertainty of 0.38 mag. This suggests that the bright-end of the LF is universal in shape at the 0.3 mag level. We find that M* is not correlated with cluster richness when using a common dynamical radius. Also, we find that M* is weakly correlated with BM-type such that later BM-type clusters have a brighter M*. A correlation between M* and radius was found for the red and blue galaxies such that M* fades towards the cluster center.Comment: Accepted for publication in ApJ, 16 pages, 4 tables, 24 figure
    corecore