72 research outputs found

    Parametric Design, Manufacturing and Simulation of On-Demand Fixed Wing UAVs

    Get PDF
    AIAA Scitech 2021 Conference Paper.As the market for Unmanned Aerial Vehicles (UAVs) continues to expand, an unfulfilled need has been identified for tailor-made solutions leveraging an end-to-end process for the design and manufacture of the vehicle. The use of computer aided design combined with new manufacturing techniques allows small UAVs to be parametrically sized and quickly prototyped and deployed. This parametrization technique can be used throughout the entire design process to create optimized, attritable, on-demand solutions that can be adapted to evolving customer requirements. High-level requirements are mapped to quantitative design constraints and an automated process uses these constraints to design and manufacture a vehicle within a specified amount of time. The proposed framework is demonstrated with the generation of a fixed wing UAV solution for the detection and tracking of wildlife in remote areas. National Parks seek to prevent illegal poaching but often lack either the resources to monitor endangered animals, or the budget to purchase UAVs specially designed for wildlife tracking. First, mission requirements are identified and define a design space from which an optimal design point is selected. This design point sizes a UAV model, which is then optimized to minimize manufacturing time with the objective to yield a ready-to-fly solution within 48 hours. A flight simulation of the mission is then performed to ensure that the vehicle will fly as designed. Structural limitations of the UAV are accounted for and linked to parameters of the flight control algorithm to ensure that the UAV can safely fly its mission

    Life in 2.5D: Animal Movement in the Trees

    Get PDF
    The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to the animals within it. Determining how the unique constraints of arboreal habitats shape the ecology and evolution of canopy-dwelling animals is key to fully understanding forest ecosystems. With emerging technologies, there is now the opportunity to quantify and map tree connectivity, and to embed the fine-scale horizontal and vertical position of moving animals into these networks of branching pathways. Integrating detailed multi-dimensional habitat structure and animal movement data will enable us to see the world from the perspective of an arboreal animal. This synthesis will shed light on fundamental aspects of arboreal animals’ cognition and ecology, including how they navigate landscapes of risk and reward and weigh energetic trade-offs, as well as how their environment shapes their spatial cognition and their social dynamics

    Estimating encounter location distributions from animal tracking data

    Get PDF
    1. Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounter rates while the relationship between individual movement and the spatial locations of encounter events in the environment has remained conspicuously understudied. 2. Here, we bridge this gap by introducing a method for describing the long-term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open-source software and demonstrate the broad ecological relevance of this distribution. 3. We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation-based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white-faced capuchins Cebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizards Tiliqua rugosa, tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location-specific encounter probability. 4. The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via the ctmm R package

    Quantifying uncertainty due to fission-fusion dynamics as a component of social complexity.

    Get PDF
    Groups of animals (including humans) may show flexible grouping patterns, in which temporary aggregations or subgroups come together and split, changing composition over short temporal scales, (i.e. fission and fusion). A high degree of fission-fusion dynamics may constrain the regulation of social relationships, introducing uncertainty in interactions between group members. Here we use Shannon's entropy to quantify the predictability of subgroup composition for three species known to differ in the way their subgroups come together and split over time: spider monkeys (Ateles geoffroyi), chimpanzees (Pan troglodytes) and geladas (Theropithecus gelada). We formulate a random expectation of entropy that considers subgroup size variation and sample size, against which the observed entropy in subgroup composition can be compared. Using the theory of set partitioning, we also develop a method to estimate the number of subgroups that the group is likely to be divided into, based on the composition and size of single focal subgroups. Our results indicate that Shannon's entropy and the estimated number of subgroups present at a given time provide quantitative metrics of uncertainty in the social environment (within which social relationships must be regulated) for groups with different degrees of fission-fusion dynamics. These metrics also represent an indirect quantification of the cognitive challenges posed by socially dynamic environments. Overall, our novel methodological approach provides new insight for understanding the evolution of social complexity and the mechanisms to cope with the uncertainty that results from fission-fusion dynamics

    Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest: Methodology and Potential Applications

    Get PDF
    Damien Caillaud is with UT Austin and Max Planck Institute for Evolutionary Anthropology; Margaret C. Crofoot is with the Smithsonian Tropical Research Institute, Max Planck Institute for Ornithology, and Princeton University; Samuel V. Scarpino is with UT Austin; Patrick A. Jansen is with the Smithsonian Tropical Research Institute, Wageningen University, and University of Groningen; Carol X. Garzon-Lopez is with University of Groningen; Annemarie J. S. Winkelhagen is with Wageningen University; Stephanie A. Bohlman is with Princeton University; Peter D. Walsh is with VaccinApe.Background -- The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings -- Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance -- We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI.The National Center For Ecological Analysis is supported by NSF Grant DEB-0553768, the University of California Santa Barbara and the State of California. The Forest Dynamics Plots were funded by NSF Grants to Stephen Hubbell DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, and by the Center for Tropical Forest Science, the Smithsonian Tropical Forest Research Institute, The John D. and Catherine T. MacArthur Foundation, the Mellon Foundation and the Celera Foundation. DC is supported by NSF grant DEB-0749097 to L.A. Meyers. SS is supported by an NSF Graduate Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Effects of body size on estimation of mammalian area requirements.

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied blockcross validation to quantify bias in empirical home range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changedsubstantially at the upper end of the mass spectrum

    Long-term Site Fidelity and Individual Home Range Shifts in Lophocebus albigena

    Get PDF
    We investigated long-term site fidelity of gray-cheeked mangabey (Lophocebus albigena) groups in Kibale National Park, Uganda. Concurrently, we monitored shifts in home range by individual females and subadult and adult males. We documented home range stability by calculating the area of overlap in successive years, and by recording the drift of each group’s monthly centroid from its initial location. Home ranges remained stable for 3 of our 4 groups (overlap over 10 yr >60%). Core areas were more labile, but group centroids drifted an average of only 530 m over the entire decade. Deviations from site fidelity were associated with dispersal or group fission. During natal dispersal, subadult males expanded their home ranges over many months, settling ≤4 home ranges away. Adult males, in contrast, typically dispersed within a few days to an adjacent group in an area of home range overlap. Adult males made solitary forays, but nearly always into areas used by their current group or by a group to which they had previously belonged. After secondary dispersal, they expanded their ranging in the company of their new group, apparently without prior solitary exploration of the new area. Some females also participated in home range shifts. Females shifted home ranges only within social groups, in association with temporary or permanent group splits. Our observations raise the possibility that male mangabeys use a finder-joiner mechanism when moving into new home ranges during secondary dispersal. Similarly, females might learn new resource locations from male immigrants before or during group fission
    corecore