97 research outputs found

    A Bayesian network approach for multi-sectoral flood damage assessment and multi-scenario analysis

    Get PDF
    Extreme weather and climate related events, from river flooding to droughts and tropical cyclones, are likely to become both more severe and more frequent in the coming decades, and the damages caused by these events will be felt across all sectors of society. In the face of this threat, policy-and decision-makers are increasingly calling for new approaches and tools to support risk management and climate adaptation pathways that can capture the full extent of the impacts. In this frame, a GIS-based Bayesian Network (BN) approach is presented for the capturing and modelling of multi-sectoral flooding damages against future 'what-if' scenarios. Building on a risk-based conceptual framework, the BN model was trained and validated by exploiting data collected from the 2014 Secchia River flooding event, as well as other contextual variables. Moreover, a novel approach to defining the structure of the BN was performed, reconfiguring the model according to expert judgment and data-based validation. The model showed a good predictive capacity for damages in the agricultural, industrial and residential sectors, predicting the severity of damages with a classification accuracy of about 60% for each of these assessment endpoints. 'What-if' scenario analysis was performed to understand the potential impacts of future changes in i) land use patterns and ii) increasing flood depths resulting from more severe flood events. The output of the model showed a rising probability of experiencing high monetary damages under both scenarios. In spite of constraints within the case study dataset, the results of the appraisal show good promise, and together with the designed BN model itself represent a valuable support for disaster risk management and reduction actions against extreme river flooding events, enabling better informed decision making

    SWOT Analysis of the Application of International Standard ISO 14001 in the Chinese Context. A Case Study of Guangdong Province

    Get PDF
    Industry has long been one of the most important drivers of Chinese economic growth. In order to improve the environmental footprint of industrial areas, Chinese authorities have established mechanisms of environmental control in the internal management processes of companies. In this regard, the international standard ISO 14001 for environmental management systems is the management tool that has had widest adoption among Chinese companies since its creation in 1996. The main purposes of the paper are to investigate the available international and national statistics on the adoptionof ISO 14001 in China, and present opinions on ISO 14001 of the 72 representatives of small and medium enterprises and multinational companies of Guangdong province that participated to the workshop New tools and standards to advance and measure corporate sustainability, held in Guangzhou on 26 January 2018. The analysis of strengths, weaknesses, opportunities and threats (SWOT) was adopted as the research method to collect opinions on the ISO 14001 standard. Participants were asked to discuss strengths, weaknesses, threats and opportunities considering four business aspects: sustainability, internal processes, stakeholder engagement, and resource management. Our findings indicate that companies fully embraced ISO 14001 and recognized the necessity of a standardized approach to identify environmental aspects. On the other hand, they also expressed concern about aspects such as the certification cost, the focus on certification itself and not on the improvement of environmental performance, and the lack of integration with sustainability tools such as life cycle assessment (LCA) and other sustainability paradigms such as circular economy and corporate social responsibility (CSR)

    Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale

    Get PDF
    Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on beaches, wetlands and protected areas) by applying a Regional Risk Assessment (RRA) methodology to the North Adriatic (NA) coast of Italy. The approach employs hazard scenarios from a multi-model chain in order to project the spatial and temporal patterns of relevant coastal erosion stressors (i.e., increases in mean sea-level, changes in wave height and variations in the sediment mobility at the sea bottom) under the A1B climate change scenario. Site-specific environmental and socio-economic indicators (e.g., vegetation cover, geomorphology, population) and hazard metrics are then aggregated by means of Multi-Criteria Decision Analysis (MCDA) with the aim to provide an example of exposure, susceptibility, risk and damage maps for the NA region. Among seasonal exposure maps winter and autumn depict the worse situation in 2070–2100, and locally around the Po river delta. Risk maps highlight that the receptors at higher risk are beaches, wetlands and river mouths. The work presents the results of the RRA tested in the NA region, discussing how spatial risk mapping can be used to establish relative priorities for intervention, to identify hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies.publishedVersio

    Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks

    Full text link
    [EN] With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 di erent combinations of a global climate model (GCM)¿regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041¿2070) and long-term (2071¿2100) periods with respect to the baseline (1983¿2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between di erent GCM¿RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.Sperotto, A.; Molina, J.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. (2019). Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks. Sustainability. 11(17):1-34. https://doi.org/10.3390/su11174764S1341117RES/70/1. Transforming our World: The 2030 Agenda for Sustainable Developmenthttps://sustainabledevelopment.un.org/post2015/transformingourworldPasini, S., Torresan, S., Rizzi, J., Zabeo, A., Critto, A., & Marcomini, A. (2012). Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment. Science of The Total Environment, 440, 219-235. doi:10.1016/j.scitotenv.2012.06.096Iyalomhe, F., Rizzi, J., Pasini, S., Torresan, S., Critto, A., & Marcomini, A. (2015). Regional Risk Assessment for climate change impacts on coastal aquifers. Science of The Total Environment, 537, 100-114. doi:10.1016/j.scitotenv.2015.06.111Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C., & Dadson, S. J. (2016). Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of The Total Environment, 572, 1507-1519. doi:10.1016/j.scitotenv.2016.02.109Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., … Vehviläinen, B. (2015). Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Science of The Total Environment, 529, 168-181. doi:10.1016/j.scitotenv.2015.05.055Carrasco, G., Molina, J.-L., Patino-Alonso, M.-C., Castillo, M. D. C., Vicente-Galindo, M.-P., & Galindo-Villardón, M.-P. (2019). Water quality evaluation through a multivariate statistical HJ-Biplot approach. Journal of Hydrology, 577, 123993. doi:10.1016/j.jhydrol.2019.123993Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877Beck, M., & Krueger, T. (2016). The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdisciplinary Reviews: Climate Change, 7(5), 627-645. doi:10.1002/wcc.415Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Ø., Piniewski, M., & Otto, I. M. (2018). Uncertainty in climate change impacts on water resources. Environmental Science & Policy, 79, 1-8. doi:10.1016/j.envsci.2017.10.008Parker, W. S. (2013). Ensemble modeling, uncertainty and robust predictions. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 213-223. doi:10.1002/wcc.220Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095-1108. doi:10.1175/2009bams2607.1Ajami, N. K., Hornberger, G. M., & Sunding, D. L. (2008). Sustainable water resource management under hydrological uncertainty. Water Resources Research, 44(11). doi:10.1029/2007wr006736Larson, K., White, D., Gober, P., & Wutich, A. (2015). Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation. Sustainability, 7(11), 14761-14784. doi:10.3390/su71114761Power, M., & McCarty, L. S. (2006). Environmental Risk Management Decision-Making in a Societal Context. Human and Ecological Risk Assessment: An International Journal, 12(1), 18-27. doi:10.1080/10807030500428538Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3-4), 312-318. doi:10.1016/j.ecolmodel.2006.11.033Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139(3-4), 551-564. doi:10.1007/s10584-016-1803-1Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. doi:10.1098/rsta.2007.2076Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2014). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21(2), 911-925. doi:10.1111/gcb.12768Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., … Surendran, S. (2000). Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate, 13(23), 4196-4216. doi:10.1175/1520-0442(2000)0132.0.co;2Xu, H., Brown, D. G., & Steiner, A. L. (2018). Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Climatic Change, 147(3-4), 647-662. doi:10.1007/s10584-018-2159-5Zuliani, A., Zaggia, L., Collavini, F., & Zonta, R. (2005). Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environment International, 31(7), 929-938. doi:10.1016/j.envint.2005.05.004Facca, C., Ceoldo, S., Pellegrino, N., & Sfriso, A. (2014). Natural Recovery and Planned Intervention in Coastal Wetlands: Venice Lagoon (Northern Adriatic Sea, Italy) as a Case Study. The Scientific World Journal, 2014, 1-15. doi:10.1155/2014/968618Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., … Marcomini, A. (2018). Modelling climate change impacts on nutrients and primary production in coastal waters. Science of The Total Environment, 628-629, 919-937. doi:10.1016/j.scitotenv.2018.02.131Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P., Manzini, E., … Navarra, A. (2011). Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. Journal of Climate, 24(16), 4368-4384. doi:10.1175/2011jcli4104.1Cattaneo, L., Zollo, A. L., Bucchignani, E., Montesarchio, M., Manzi, M. P., & Mercogliano, P. (2012). Assessment of COSMO-CLM Performances over Mediterranean Area. SSRN Electronic Journal. doi:10.2139/ssrn.2195524Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004MADSEN, A. L., JENSEN, F., KJÆRULFF, U. B., & LANG, M. (2005). THE HUGIN TOOL FOR PROBABILISTIC GRAPHICAL MODELS. International Journal on Artificial Intelligence Tools, 14(03), 507-543. doi:10.1142/s0218213005002235Bromley, J., Jackson, N. A., Clymer, O. J., Giacomello, A. M., & Jensen, F. V. (2005). The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environmental Modelling & Software, 20(2), 231-242. doi:10.1016/j.envsoft.2003.12.021J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, … M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256Marcot, B. G. (2012). Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling, 230, 50-62. doi:10.1016/j.ecolmodel.2012.01.013http://www.landscapelogic.org.au/publications/Technical_Reports/No_9_BNs_for_Integrated_Catchment_Management.pdfMolina, J.-L., Zazo, S., Rodríguez-Gonzálvez, P., & González-Aguilera, D. (2016). Innovative Analysis of Runoff Temporal Behavior through Bayesian Networks. Water, 8(11), 484. doi:10.3390/w8110484Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., & Hart, B. T. (2007). Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environmental Modelling & Software, 22(8), 1140-1152. doi:10.1016/j.envsoft.2006.03.006Pesce, M., Critto, A., Torresan, S., Giubilato, E., Pizzol, L., & Marcomini, A. (2019). Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the lagoon of Venice, Italy. Ecological Engineering, 133, 121-136. doi:10.1016/j.ecoleng.2019.04.011Bouraoui, F., Galbiati, L., & Bidoglio, G. (2002). Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences, 6(2), 197-209. doi:10.5194/hess-6-197-2002Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2011). Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions. Water Resources Management, 25(14), 3635-3660. doi:10.1007/s11269-011-9874-2Molina, J.-L., Pulido-Velázquez, D., García-Aróstegui, J. L., & Pulido-Velázquez, M. (2013). Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology, 479, 113-129. doi:10.1016/j.jhydrol.2012.11.03

    SADA and DESYRE DSSs descriptive classification criteria (main issues related to DSS's)

    Get PDF
    Brownfield rehabilitation is an essential step for sustainable land-use planning and management in the European Union. In brownfield regeneration processes, the legacy contamination plays a significant role, firstly because of the persistent contaminants in soil or groundwater which extends the existing hazards and risks well into the future; and secondly, problems from historical contamination are often more difficult to manage than contamination caused by new activities. Due to the complexity associated with the management of brownfield site rehabilitation, Decision Support Systems (DSSs) have been developed to support problem holders and stakeholders in the decision-making process encompassing all phases of the rehabilitation. This paper presents a comparative study between two DSSs, namely SADA (Spatial Analysis and Decision Assistance) and DESYRE (Decision Support System for the Requalification of Contaminated Sites), with the main objective of showing the benefits of using DSSs to introduce and process data and then to disseminate results to different stakeholders involved in the decision-making process. For this purpose, a former car manufacturing plant located in the Brasov area, Central Romania, contaminated chiefly by heavy metals and total petroleum hydrocarbons, has been selected as a case study to apply the two examined DSSs. Major results presented here concern the analysis of the functionalities of the two DSSs in order to identify similarities, differences and complementarities and, thus, to provide an indication of the most suitable integration options

    Bioaccumulation of trace metals in aquatic food web. A case study, Liaodong Bay, NE China

    Get PDF
    The recently developed modelling tool MERLIN-Expo was applied to support the exposure assessment of an aquatic food web to trace metals in a coastal environment. The exposure scenario, built on the data from Daliao River estuary in the Liaodong Bay (Bohai Sea, China), affected by long-term and large-scale industrial activities as well as rapid urbanization in Liao River watershed, represents an interesting case-study for ecological exposure modelling due to the availability of local data on metal concentrations in water and sediment. The bioaccumulation of selected trace metals in aquatic organisms was modelled and compared with field data from local aquatic organisms. Both model results and experimental data demonstrated that As, Cd, Cu, Ni, Pb and Zn, out of examined metals, were accumulated most abundantly by invertebrates and less by higher trophic level species. The body parts of the sampled animals with the highest measured concentration of metals were predominantly muscles, intestine and liver and fish skin in the case of Cr.The Morris and extended Fourier Analysis (EFAST) were used to account for variability in selected parameters of the bioaccumulation model. Food assimilation efficiency and slopes and intercepts of two sub-models for calculating metal specific BCFs (BCFmetarexposure concentration) and fish weight (Weightiuh-Lengthfish) were identified as the most influential parameters on ecological exposure to selected metals

    Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation

    Get PDF
    Climate change has already led to a wide range of impacts on our society, the economy and the environment.According to future scenarios, mountain regions are highly vulnerable to climate impacts, including changes in the water cycle (e.g. rainfall extremes, melting of glaciers, river runoff), loss of biodiversity and ecosystems services, damages to local economy (drinking water supply, hydropower generation, agricultural suitability) and human safety (risks of natural hazards). This is due to their exposure to recent climate warming (e.g. temperature regime changes, thawing of permafrost) and the high degree of specialization of both natural and human systems (e.g. mountain species, valley population density, tourism-based economy). These characteristics call for the application of risk assessment methodologies able to describe the complex interactions among multiple hazards, biophysical and socio-economic systems, towards climate change adaptation.Current approaches used to assess climate change risks often address individual risks separately and do not fulfil a comprehensive representation of cumulative effects associated to different hazards (i.e. compound events). Moreover, pioneering multi-layer single risk assessment (i.e. overlapping of single-risk assessments addressing different hazards) is still widely used, causing misleading evaluations of multi-risk processes. This raises key questions about the distinctive features of multi-risk assessments and the available tools and methods to address them.Here we present a review of five cutting-edge modelling approaches (Bayesian networks, agent-based models, system dynamic models, event and fault trees, and hybrid models), exploring their potential applications for multi-risk assessment and climate change adaptation in mountain regions.The comparative analysis sheds light on advantages and limitations of each approach, providing a roadmap for methodological and technical implementation of multi-risk assessment according to distinguished criteria (e.g. spatial and temporal dynamics, uncertainty management, cross-sectoral assessment, adaptation measures integration, data required and level of complexity). The results show limited applications of the selected methodologies in addressing the climate and risks challenge in mountain environments. In particular, system dynamic and hybrid models demonstrate higher potential for further applications to represent climate change effects on multi-risk processes for an effective implementation of climate adaptation strategies

    Redefining coherence : interaction and experience in new music, 1985-1995

    Get PDF
    This thesis presents an analytical exploration of a number of works from 1985 to 1995, many of which have not previously received detailed attention. Although they stem from quite varied stylistic and aesthetic backgrounds, all these pieces are situated in a particular position within the tradition of Western art music: they show an approach which is neither ‘avant-garde’ in its commitment to continual formal and technical novelty, nor clearly associated with any other existing compositional school. Instead, they engage with a diverse range of models, both musical and external; intra-musical connections range from the legacy of the broader Classical and Romantic common-practice tradition to the varied timbral and formal developments of the twentieth-century avant-garde, whilst extra-musical connections seem almost endless, encompassing fields from art to astronomy, literature to horticulture. Alongside this stylistic and referential plurality, they display an often seemingly intuitive approach towards structure and system, with their most striking musical effects often arising out of layered, non-hierarchical interactions between different materials and processes. As such, they present clear challenges to traditional conceptions of analysis, which are often based around the systematic generation of clear (albeit often very complex) organisational structures. It is argued that this music, in spite of these challenges, displays a striking level of expressive and aural coherence; conventional ways of understanding this term – whether they be based around unity of material or form or process – need to be redefined to take this into account. Chosen works are approached by way of a ‘patchwork’ of different perspectives and techniques: the core of the thesis is a series of four case studies which connect narratives of listener experience with analytical and contextual detail, making particular use of the clarifying potential of metaphor. These close readings are interleaved with chapters which consider the wider challenges and implications for the study of this repertoire, drawing upon a number of strands in contemporary musicological and philosophical thought.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore