185 research outputs found

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Organizing Shared Digital Reading in Groups: Optimizing the Affordances of Text and Medium

    Get PDF
    Children develop their language when they explore and talk about literary texts. In this study, we explore the design of shared digital reading as a basis for critical reflection on the reading situation in an institutional context with its given opportunities and limitations. We examine six videotaped readings of one specific picture book app, with a focus on the strategies used by teachers in early childhood education and care institutions to control children’s access to the medium and the types of verbal engagement (about the story and about the medium) that are generated by these different strategies. We use qualitative and quantitative analysis of video data. A qualitative categorization of the readings reveals the strategies Show, Show & Share, and Share. In analyzing the participants’ verbal and multisensory engagement, we find that the Show strategy generates more utterances, especially about the story, as well as more time spent on dialogue.publishedVersio

    Diagnostic accuracy of the primary care screener for affective disorder (PC-SAD) in primary care

    Get PDF
    Background: Depression goes often unrecognised and untreated in non-psychiatric medical settings. Screening has recently gained acceptance as a first step towards improving depression recognition and management. The Primary Care Screener for Affective Disorders (PC-SAD) is a self-administered questionnaire to screen for Major Depressive Disorder (MDD) and Dysthymic Disorder (Dys) which has a sophisticated scoring algorithm that confers several advantages. This study tested its performance against a ‘gold standard’ diagnostic interview in primary care. Methods: A total of 416 adults attending 13 urban general internal medicine primary care practices completed the PC-SAD. Of 409 who returned a valid PC-SAD, all those scoring positive (N=151) and a random sample (N=106) of those scoring negative were selected for a 3-month telephone follow-up assessment including the administration of the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID-I) by a psychiatrist who was masked to PC-SAD results. Results: Most selected patients (N=212) took part in the follow-up assessment. After adjustment for partial verification bias the sensitivity, specificity, positive and negative predictive value for MDD were 90%, 83%, 51%, and 98%. For Dys, the corresponding figures were 78%, 79%, 8%, and 88%. Conclusions: While some study limitations suggest caution in interpreting our results, this study corroborated the diagnostic validity of the PC-SAD, although the low PPV may limit its usefulness with regard to Dys. Given its good psychometric properties and the short average administration time, the PC-SAD might be the screening instrument of choice in settings where the technology for computer automated scoring is available

    Minimal Extrathyroidal Extension in Predicting 1-Year Outcomes: A Longitudinal Multicenter Study of Low-to-Intermediate-Risk Papillary Thyroid Carcinoma (ITCO#4)

    Get PDF
    Background: The role of minimal extrathyroidal extension (mETE) as a risk factor for persistent papillary thyroid carcinoma (PTC) is still debated. The aims of this study were to assess the clinical impact of mETE as a predictor of worse initial treatment response in PTC patients and to verify the impact of radioiodine therapy after surgery in patients with mETE. Methods: We reviewed all records in the Italian Thyroid Cancer Observatory database and selected 2237 consecutive patients with PTC who satisfied the inclusion criteria (PTC with no lymph node metastases and at least 1 year of follow-up). For each case, we considered initial surgery, histological variant of PTC, tumor diameter, recurrence risk class according to the American Thyroid Association (ATA) risk stratification system, use of radioiodine therapy, and initial therapy response, as suggested by ATA guidelines. Results: At 1-year follow-up, 1831 patients (81.8%) had an excellent response, 296 (13.2%) had an indeterminate response, 55 (2.5%) had a biochemical incomplete response, and 55 (2.5%) had a structural incomplete response. Statistical analysis suggested that mETE (odds ratio [OR] 1.16, p = 0.65), tumor size >2 cm (OR 1.45, p = 0.34), aggressive PTC histology (OR 0.55, p = 0.15), and age at diagnosis (OR 0.90, p = 0.32) were not significant risk factors for a worse initial therapy response. When evaluating the combination of mETE, tumor size, and aggressive PTC histology, the presence of mETE with a >2 cm tumor was significantly associated with a worse outcome (OR 5.27 [95% confidence interval], p = 0.014). The role of radioiodine ablation in patients with mETE was also evaluated. When considering radioiodine treatment, propensity score-based matching was performed, and no significant differences were found between treated and nontreated patients (p = 0.24). Conclusions: This study failed to show the prognostic value of mETE in predicting initial therapy response in a large cohort of PTC patients without lymph node metastases. The study suggests that the combination of tumor diameter and mETE can be used as a reliable prognostic factor for persistence and could be easily applied in clinical practice to manage PTC patients with low-to-intermediate risk of recurrent/persistent disease

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis

    Divertor of the European DEMO: Engineering and technologies for power exhaust

    Get PDF
    In a power plant scale fusion reactor, a huge amount of thermal power produced by the fusion reaction and external heating must be exhausted through the narrow area of the divertor targets. The targets must withstand the intense bombardment of the diverted particles where high heat fluxes are generated and erosion takes place on the surface. A considerable amount of volumetric nuclear heating power must also be exhausted. To cope with such an unprecedented power exhaust challenge, a highly efficient cooling capacity is required. Furthermore, the divertor must fulfill other critical functions such as nuclear shielding and channeling (and compression) of exhaust gas for pumping. Assuring the structural integrity of the neutron-irradiated (thus embrittled) components is a crucial prerequisite for a reliable operation over the lifetime. Safety, maintainability, availability, waste and costs are another points of consideration. In late 2020, the Pre-Conceptual Design activities to develop the divertor of the European demonstration fusion reactor were officially concluded. On this occasion, the baseline design and the key technology options were identified and verified by the project team (EUROfusion Work Package Divertor) based on seven years of R&D efforts and endorsed by Gate Review Panel. In this paper, an overview of the load specifications, brief descriptions of the design and the highlights of the technology R&D work are presented together with the further work still needed

    Overview of the FTU results

    Get PDF
    Since the 2016 IAEA Fusion Energy Conference, FTU operations have been mainly devoted to experiments on runaway electrons and investigations into a tin liquid limiter; other experiments have involved studies of elongated plasmas and dust. The tearing mode onset in the high density regime has been studied by means of the linear resistive code MARS, and the highly collisional regimes have been investigated. New diagnostics, such as a runaway electron imaging spectroscopy system for in-flight runaway studies and a triple Cherenkov probe for the measurement of escaping electrons, have been successfully installed and tested, and new capabilities of the collective Thomson scattering and the laser induced breakdown spectroscopy diagnostics have been explored
    • …
    corecore