139 research outputs found
A hypomorphic Cbx3 allele causes prenatal growth restriction and perinatal energy homeostasis defects
Mammals have three HP1 protein isotypes HP1β (CBX1), HP1γ (CBX3) and HP1α (CBX5) that are encoded by the corresponding genes Cbx1, Cbx3 and Cbx5. Recent work has shown that reduction of CBX3 protein in homozygotes for a hypomorphic allele (Cbx3 hypo) causes a severe postnatal mortality with around 99% of the homozygotes dying before weaning. It is not known what the causes of the postnatal mortality are. Here we show that Cbx3 hypo/hypo conceptuses are significantly reduced in size and the placentas exhibit a haplo-insufficiency. Late gestation Cbx3 hypo/hypo placentas have reduced mRNA transcripts for genes involved in growth regulation, amino acid and glucose transport. Blood vessels within the Cbx3 hypo/hypo placental labyrinth are narrower than wild-type. Newborn Cbx3 hypo/hypo pups are hypoglycemic, the livers are depleted of glycogen reserves and there is almost complete loss of stored lipid in brown adipose tissue (BAT). There is a 10-fold reduction in expression of the BAT-specific Ucp1 gene, whose product is responsible for non-shivering themogenesis. We suggest that it is the small size of the Cbx3 hypo/hypo neonates, a likely consequence of placental growth and transport defects, combined with a possible inability to thermoregulate that causes the severe postnatal mortality
Mediator and cohesin connect gene expression and chromatin architecture
Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.National Institutes of Health (U.S.) (Fellowship)Canadian Institutes of Health Research (Research Fellowship)National Institutes of Health (U.S.) (Grant R01 HG002668
The Antioxidant Protein Peroxiredoxin 4 Is Epigenetically Down Regulated in Acute Promyelocytic Leukemia
The antioxidant peroxiredoxin (PRDX) protein family comprises 6 members, which are implicated in a variety of cellular responses, including growth factor signal transduction. PRDX4 resides in the endoplasmic reticulum (ER), where it locally controls oxidative stress by reducing H2O2levels. We recently provided evidence for a regulatory function of PRDX4 in signal transduction from a myeloid growth factor receptor, the granulocyte colony-stimulating factor receptor (G-CSFR). Upon activation, the ligand-induced G-CSFR undergoes endocytosis and routes via the early endosomes where it physically interacts with ER-resident PRDX4. PRDX4 negatively regulates G-CSFR mediated signaling. Here, we investigated whether PRDX4 is affected in acute myeloid leukemia (AML); genomic alterations and expression levels of PRDX4 were investigated. We show that genomic abnormalities involving PRDX4 are rare in AML. However, we find a strong reduction in PRDX4 expression levels in acute promyelocytic leukemia (APL) compared to normal promyelocytes and different molecular subtypes of AML. Subsequently, the possible role of DNA methylation and histone modifications in silencing of PRDX4 in APLs was investigated. We show that the reduced expression is not due to methylation of the CpG island in the promoter region of PRDX4 but correlates with increased trimethylation of histone 3 lysine residue 27 (H3K27me3) and lysine residue 4 (H3K4me3) at the transcriptional start site (TSS) of PRDX4, indicative of a bivalent histone code involved in transcriptional silencing. These findings suggest that the control of G-CSF responses by the antioxidant protein PRDX4 may be perturbed in APL
Optical coherence tomography—current technology and applications in clinical and biomedical research
Epigenetic Transcriptional Regulation of the Growth Arrest-Specific gene 1 (Gas1) in Hepatic Cell Proliferation at Mononucleosomal Resolution
BACKGROUND: Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP). It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1)/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0) and H4R3me2 in G(1)/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1)/S transition. CONCLUSIONS/SIGNIFICANCE: The finding that Gas1 is transcribed at the G(1)/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and "repressing" epigenetic marks, and by chromatin remodeling and histone modifying complexes recruitment, at specific nucleosomes in Gas1 promoter
Long Term Transcriptional Reactivation of Epigenetically Silenced Genes in Colorectal Cancer Cells Requires DNA Hypomethylation and Histone Acetylation
Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2′-deoxycytidine (5-aza-dC) is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone. Aim: We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis. Results: Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation. Conclusions: These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes
Spatial Proximity and Similarity of the Epigenetic State of Genome Domains
Recent studies demonstrate that the organization of the chromatin within the nuclear space might play a crucial role in the regulation of gene expression. The ongoing progress in determination of the 3D structure of the nuclear chromatin allows one to study correlations between spatial proximity of genome domains and their epigenetic state. We combined the data on three-dimensional architecture of the whole human genome with results of high-throughput studies of the chromatin functional state and observed that fragments of different chromosomes that are spatially close tend to have similar patterns of histone modifications, methylation state, DNAse sensitivity, expression level, and chromatin states in general. Moreover, clustering of genome regions by spatial proximity produced compact clusters characterized by the high level of histone modifications and DNAse sensitivity and low methylation level, and loose clusters with the opposite characteristics. We also associated the spatial proximity data with previously detected chimeric transcripts and the results of RNA-seq experiments and observed that the frequency of formation of chimeric transcripts from fragments of two different chromosomes is higher among spatially proximal genome domains. A fair fraction of these chimeric transcripts seems to arise post-transcriptionally via trans-splicing
Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification
Abstract
Background
Transcription promoters are fundamental genomic cis-elements controlling gene expression. They can be classified into two types by the degree of imprecision of their transcription start sites: peak promoters, which initiate transcription from a narrow genomic region; and broad promoters, which initiate transcription from a wide-ranging region. Eukaryotic transcription initiation is suggested to be associated with the genomic positions and modifications of nucleosomes. For instance, it has been recently shown that histone with H3K9 acetylation (H3K9ac) is more likely to be distributed around broad promoters rather than peak promoters; it can thus be inferred that there is an association between histone H3K9 and promoter architecture.
Results
Here, we performed a systematic analysis of transcription promoters and gene expression, as well as of epigenetic histone behaviors, including genomic position, stability within the chromatin, and several modifications. We found that, in humans, broad promoters, but not peak promoters, generally had significant associations with nucleosome positioning and modification. Specifically, around broad promoters histones were highly distributed and aligned in an orderly fashion. This feature was more evident with histones that were methylated or acetylated; moreover, the nucleosome positions around the broad promoters were more stable than those around the peak ones. More strikingly, the overall expression levels of genes associated with broad promoters (but not peak promoters) with modified histones were significantly higher than the levels of genes associated with broad promoters with unmodified histones.
Conclusion
These results shed light on how epigenetic regulatory networks of histone modifications are associated with promoter architecture
Discovery and Annotation of Functional Chromatin Signatures in the Human Genome
Transcriptional regulation in human cells is a complex process involving a
multitude of regulatory elements encoded by the genome. Recent studies have
shown that distinct chromatin signatures mark a variety of functional genomic
elements and that subtle variations of these signatures mark elements with
different functions. To identify novel chromatin signatures in the human genome,
we apply a de novo pattern-finding algorithm to genome-wide
maps of histone modifications. We recover previously known chromatin signatures
associated with promoters and enhancers. We also observe several chromatin
signatures with strong enrichment of H3K36me3 marking exons. Closer examination
reveals that H3K36me3 is found on well-positioned nucleosomes at exon
5′ ends, and that this modification is a global mark of exon
expression that also correlates with alternative splicing. Additionally, we
observe strong enrichment of H2BK5me1 and H4K20me1 at highly expressed exons
near the 5′ end, in contrast to the opposite distribution of
H3K36me3-marked exons. Finally, we also recover frequently occurring chromatin
signatures displaying enrichment of repressive histone modifications. These
signatures mark distinct repeat sequences and are associated with distinct modes
of gene repression. Together, these results highlight the rich information
embedded in the human epigenome and underscore its value in studying gene
regulation
Increased Expression of Beta-Defensin 1 (DEFB1) in Chronic Obstructive Pulmonary Disease
On-going airway inflammation is characteristic for the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the key factors determining the decrease in lung function, an important clinical parameter of COPD, are not clear. Genome-wide linkage analyses provide evidence for significant linkage to airway obstruction susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Moreover, a genetic variation in the defensin beta 1 (DEFB1) gene was found to be associated with COPD. Therefore, we hypothesized that DEFB1 is differently regulated and expressed in human lungs during COPD progression. Gene expression of DEFB1 was assessed in bronchial epithelium and BAL fluid cells of healthy controls and patients with COPD and using bisulfite sequencing and ChIP analysis, the epigenetic control of DEFB1 mRNA expression was investigated. We can demonstrate that DEFB1 mRNA expression was significantly increased in bronchopulmonary specimen of patients with COPD (n = 34) vs. healthy controls (n = 10) (p<0.0001). Furthermore, a significant correlation could be detected between DEFB1 and functional parameters such as FEV1 (p = 0.0024) and the FEV1/VC ratio (p = 0.0005). Upregulation of DEFB1 mRNA was paralleled by changes in HDAC1-3, HDAC5 and HDAC8 mRNA expression. Whereas bisulfite sequencing revealed no differences in the methylation state of DEFB1 promoter between patients with COPD and controls, ChIP analysis showed that enhanced DEFB1 mRNA expression was associated with the establishment of an active histone code. Thus, expression of human DEFB1 is upregulated and related to the decrease in pulmonary function in patients with COPD
- …
