56 research outputs found

    A tiered-layered-staged model for informed consent in personal genome testing

    Get PDF
    In recent years, developments in genomics technologies have led to the rise of commercial personal genome testing (PGT): broad genome-wide testing for multiple diseases simultaneously. While some commercial providers require physicians to order a personal genome test, others can be accessed directly. All providers advertise directly to consumers and offer genetic risk information about dozens of diseases in one single purchase. The quantity and the complexity of risk information pose challenges to adequate pre-test and post-test information provision and informed consent. There are currently no guidelines for what should constitute informed consent in PGT or how adequate informed consent can be achieved. In this paper, we propose a tiered-layered-staged model for informed consent. First, the proposed model is tiered as it offers choices between categories of diseases that are associated with distinct ethical, personal or societal issues. Second, the model distinguishes layers of information with a first layer offering minimal, indispensable information that is material to all consumers, and additional layers offering more detailed information made available upon request. Finally, the model stages informed consent as a process by feeding information to consumers in each subsequent stage of the process of undergoing a test, and by accommodating renewed consent for test result updates, resulting from the ongoing development of the science underlying PGT. A tiered-layered-staged model for informed consent with a focus on the consumer perspective can help overcome the ethical problems of information provision and informed consent in direct-to-consumer PGT.European Journal of Human Genetics advance online publication, 21 November 2012; doi:10.1038/ejhg.2012.237

    The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management

    Get PDF
    International audienceBackground Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. Methodology and Principal Findings Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus

    Malignant Tumors of the Central Nervous System

    Get PDF
    Malignant tumors of the central nervous system in adults comprise a heterogeneous group of malignancies, the largest subgroups comprising astrocytomas, ependymomas, and oligodendrogliomas. Glioblastomas are the most common tumor type, and they have dismal prognosis. Due to differences in cell type of origin, as well as pathogenesis, it is plausible that their etiology also differs between tumor types. The etiology of malignant CNS tumors is largely unknown and no occupational risk factors have been definitively identified. High doses of ionizing radiation increase the risk, but in occupational settings the dose levels appear too small to result in discernible excesses. Several studies have assessed possible effect of extremely low frequency and radiofrequency electromagnetic fields, but the results are inconsistent. Increased brain tumor risk has been reported in agricultural workers, but no specific exposure has been linked to them. Pesticides have been analyzed in several studies without showing a clear increase in risk.acceptedVersionPeer reviewe

    Collaborative Design and Implementation of a Multisite Community Coalition Evaluation

    Full text link
    Evaluation designs assessing community coalitions must balance measures of how coalitions do their work and evidence that the coalitions are making a difference. The Allies cross-site evaluation attempts to determine the combined effects of the seven coalitions’ work at the individual, organizational, and community levels. Principal components considered are (a) contextual factors of the coalition community, (b) coalition processes and structure, (c) planning and planning products, (d) implementation actions, (e) activities and collaborations, (f) anticipated intermediate outcomes, and (g) expected asthma related health outcomes. Measurements are quantitative and qualitative, and data generated by these methods are used as ends in themselves and as a way to confirm or inform other measures. Evaluation has been an integral part of the planning and implementation phases of the Allies coalition work, with a priority of involving all of the partners in conceiving of and deciding upon the elements of assessment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83257/1/08 Lachance et al. HPP 7.2 44S-55S.pd

    Fungal Diversity Associated with Hawaiian Drosophila Host Plants

    Get PDF
    Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation
    • …
    corecore