1,150 research outputs found

    Exploration of the Mid-Cayman Rise

    Get PDF
    Oceanography articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately (e.g., authors, Oceanography, volume number, issue number, page number[s], figure number[s], and DOI for the article), provide a link to the Creative Commons license, and indicate the changes that were made to the original content

    Toward Fulfilling the Promise of Molecular Medicine in Fragile X

    Get PDF
    Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autism-related single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.)National Institute of Mental Health (U.S.)FRAXA Research Foundatio

    Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales

    Get PDF
    The distribution of core lipids in the membranes of nine different species of the order Thermotogales, one of the early and deep branching lineages in the Bacteria, were examined by HPLC/MS and demonstrated to consist of membrane-spanning diglycerol lipids comprised of diabolic acid-derived alkyl moieties. In the Thermotoga species the core membrane lipids are characterized by the presence of both ester and ether bonds, whereas in the phylogenetically more distinct Thermosipho and Fervidobacterium spp. only ester bonds occur. A tentative biosynthetic route for the biosynthesis of these membrane-spanning lipids is proposed. Since species of the order Thermotogales are assumed to have occurred early during the evolution of life on Earth, as suggested by its position in the phylogenetic tree of life, these data suggest that the ability to produce both ether and ester glycerol membrane lipids developed relatively early during microbial evolution

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature

    Get PDF
    The first quadruple luminescent sensor is presented which enables simultaneous detection of three chemical parameters and temperature. A multi-layer material is realized and combines two spectrally independent dually sensing systems. The first layer employs ethylcellulose containing the carbon dioxide sensing chemistry (fluorescent pH indicator 8-hydroxy-pyrene-1,3,6-trisulfonate (HPTS) and a lipophilic tetraalkylammonium base). The cross-linked polymeric beads stained with a phosphorescent iridium(III) complex are also dispersed in ethylcellulose and serve both for oxygen sensing and as a reference for HPTS. The second (pH/temperature) dually sensing system relies on the use of a pH-sensitive lipophilic seminaphthorhodafluor derivative and luminescent chromium(III)-activated yttrium aluminum borate particles (simultaneously acting as a temperature probe and as a reference for the pH indicator) which are embedded in polyurethane hydrogel layer. A silicone layer is used to spatially separate both dually sensing systems and to insure permeation selectivity for the CO2/O2 layer. The CO2/O2 and the pH/temperature layers are excitable with a blue and a red LED, respectively, and the emissions are isolated with help of optical filters. The measurements are performed at two modulation frequencies for each sensing system and the modified Dual Lifetime Referencing method is used to access the analytical information. The feasibility of the simultaneous four-parameter sensing is demonstrated. However, the practical applicability of the material may be compromised by its high complexity and by the performance of individual indicators

    An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core

    Get PDF
    The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report the discovery of a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decline of its light curve follows the predicted mass accretion rate, and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about 2 million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.Comment: To appear in Nature on May 10, 201

    MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1

    Get PDF
    © 2018 The Author(s). Differential trafficking of AMPA receptors (AMPARs) to and from the postsynaptic membrane is a key determinant of the strength of excitatory neurotransmission, and is thought to underlie learning and memory. The transcription factor MEF2 is a negative regulator of memory in vivo, in part by regulating trafficking of the AMPAR subunit GluA2, but the molecular mechanisms behind this have not been established. Here we show, via knockdown of endogenous MEF2A in primary neuronal culture, that MEF2A is specifically required for Group I metabotropic glutamate receptor (mGluR)-mediated GluA2 internalisation, but does not regulate AMPAR expression or trafficking under basal conditions. Furthermore, this process occurs independently of changes in expression of Arc/Arg3.1, a previously characterised MEF2 transcriptional target and mediator of mGluR-dependent long-term depression. These data demonstrate a novel MEF2A-dependent mechanism for the regulation of activity-dependent AMPAR trafficking

    A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin

    Get PDF
    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner. © 2017, Springer Science+Business Media New York

    Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy

    Get PDF
    BACKGROUND: Hypophosphatasia (HP) is characterized by a genetic defect in the tissue-nonspecific alkaline phosphatase (TNSALP) gene and predominantly an autosomal recessive trait. HP patients suffer from reduced bone mineralization. Biochemically, elevated concentrations of substrates of TNSALP, including pyridoxal-5'-phosphate and inorganic pyrophosphate occur in serum, tissues and urine. The latter has been associated with chronic inflammation and hyperprostaglandinism. CASE PRESENTATION: We report on 2 affected children presenting with multifocal inflammatory bone lesions mimicking malignancy: A 6 years old girl with short stature had been treated with human growth hormone since 6 months. Then she started to complain about a painful swelling of her left cheek. MRI suggested a malignant bone lesion. Bone biopsy, however, revealed chronic inflammation. A bone scan showed a second rib lesion. Since biopsy was sterile, the descriptive diagnosis of chronic non-bacterial osteomyelitis (CNO) was established. The diagnostic tests related to growth failure were repeated and subsequent analyses demonstrated a molecular defect in the TNSALP gene. The second girl (10 years old) complained about back pain after she had fallen from her bike. X rays of her spine revealed compressions of 2 thoracic vertebrae. At first these were considered trauma related, however a bone scan did show an additional lesion in the right 4(th )rib. A biopsy of this rib revealed a sterile lympho- plasmocytoid osteomyelitis suggesting multifocal CNO. Further analyses did show a decreased TNSALP in leukocytes and elevated pyridoxal phosphate in plasma, suggesting a heterozygous carrier status of HP. CONCLUSION: Chronic bone oedema in adult HP and chronic hyper-prostaglandinism in childhood HP do suggest that in some HP patients bone inflammation is present in conjunction with the metabolic defect. Sterile multifocal osteomyelitis could be demonstrated. Non-steroidal anti-inflammatory treatment achieved complete remission. These cases illustrate chronic inflammation of the bone as a new feature of HP
    • …
    corecore