61 research outputs found

    Climate Influence on Deep Sea Populations

    Get PDF
    Dynamics of biological processes on the deep-sea floor are traditionally thought to be controlled by vertical sinking of particles from the euphotic zone at a seasonal scale. However, little is known about the influence of lateral particle transport from continental margins to deep-sea ecosystems. To address this question, we report here how the formation of dense shelf waters and their subsequent downslope cascade, a climate induced phenomenon, affects the population of the deep-sea shrimp Aristeus antennatus. We found evidence that strong currents associated with intense cascading events correlates with the disappearance of this species from its fishing grounds, producing a temporary fishery collapse. Despite this initial negative effect, landings increase between 3 and 5 years after these major events, preceded by an increase of juveniles. The transport of particulate organic matter associated with cascading appears to enhance the recruitment of this deep-sea living resource, apparently mitigating the general trend of overexploitation. Because cascade of dense water from continental shelves is a global phenomenon, we anticipate that its influence on deep-sea ecosystems and fisheries worldwide should be larger than previously thought

    A feasibility study exploring the role of pre-operative assessment when examining the mechanism of ‘chemo-brain’ in breast cancer patients

    Get PDF
    Background: Women receiving chemotherapy treatment for breast cancer may experience problems with their memory and attention (cognition), which is distressing and interferes with quality of life. It is unclear what causes or contributes to the problems they report: psychological distress, fatigue, coping style, or specific biological changes for example to pro inflammatory cytokines. Research shows however, that approximately a third of women with breast cancer perform poorly on tests of cognition before commencing chemotherapy. We aimed to examine the acceptability and relevance of pre-surgical assessments (bloods, brain imaging, cognitive tests and self-report questionnaires) when investigating the phenomenon of ‘chemo-brain’ and investigate whether inflammatory markers mediate chemotherapy-induced neuropsychological impairments in women treated for breast cancer. Methods: Women with early stage breast cancer completed neuropsychological and quality of life assessments at T1 (pre-surgery), T2 (post-surgery before chemotherapy) and T3 (6 months later). Blood cytokine levels were measured at the same time points and brain imaging was performed at T1 and T3. Results: In total, 14/58 women participated (8 chemotherapy, 6 non-chemotherapy). Prior to the start of chemotherapy a decline in cognitive performance compared to baseline was observed in one participant. At T3 women who received chemotherapy reported poorer quality of life and greater fatigue. Increases in soluble tumour necrosis factor receptor II (sTNFRII), interleukin-6, interleukin-10 and vascular endothelial growth factor occurred post chemotherapy only. Levels of sTNFRII were inversely correlated with grey matter volume (GMV) of the right posterior insula in both groups. At T3, the chemotherapy group displayed a greater reduction in GMV in the subgenual and dorsal anterior cingulate, and the inferior temporal gyrus. Conclusions: Pre-operative recruitment to the study was challenging; however, the lack of significant changes in blood cytokine levels and neuropsychological tests at T2 implies that post surgery may be a valid baseline assessment, but this needs further investigation in a larger study. The preliminary results support the hypothesis that chemotherapy induced fatigue is mediated by a change in peripheral cytokine levels which could explain some symptoms of ‘chemo brain’ experienced by patients

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure

    Full text link

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys
    corecore