108 research outputs found

    Social patterning in grip strength and in its association with age; A cross sectional analysis using the UK Household Longitudinal Study (UKHLS)

    Get PDF
    Background: Grip strength in early adulthood and midlife is an important predictor of disability, morbidity and mortality in later life. Understanding social patterning in grip strength at different life stages could improve insight into inequalities in age-related decline and when in the life course interventions could prevent the emergence of inequalities. Methods: Using United Kingdom Household Longitudinal Study (UKHLS) data on 19,292 people aged 16 to 99, fractional polynomial models were fitted to identify which function of age best described its association with grip strength. Linear regressions were used to establish whether socio-economic position (SEP), as measured by maternal education, highest educational qualification and income, was associated with grip strength. To test whether the association between age and grip strength was modified by SEP, interactions between SEP and the age terms were added. Differentiation was used to identify the age at which grip strength was highest for men and women and predicted levels of grip strength at peak were compared. Results: SEP is significantly associated with grip strength on all SEP measures, except education for men. Grip strength is highest at a younger age, and less strong for all measures of disadvantage for women and most measures for men. Interaction terms were not statistically significant indicating that the association between age and grip strength was not modified by SEP. Grip strength peak was 29.3 kg at age 33 for women with disadvantaged childhood SEP compared with 30.2 kg at age 35 for women with advantaged childhood SEP. Conclusion: The SEP differences in age and level of peak grip strength could be indicative of decline in muscle strength beginning earlier and from a lower base for disadvantaged groups. This could impact on the capacity for healthy ageing for those with disadvantaged SEP

    Temporal Dissociation between Myeloperoxidase (MPO)-Modified LDL and MPO Elevations during Chronic Sleep Restriction and Recovery in Healthy Young Men

    Get PDF
    OBJECTIVES: Many studies have evaluated the ways in which sleep disturbances may influence inflammation and the possible links of this effect to cardiovascular risk. Our objective was to investigate the effects of chronic sleep restriction and recovery on several blood cardiovascular biomarkers. METHODS AND RESULTS: Nine healthy male non-smokers, aged 22-29 years, were admitted to the Sleep Laboratory for 11 days and nights under continuous electroencephalogram polysomnography. The study consisted of three baseline nights of 8 hours sleep (from 11 pm to 7 am), five sleep-restricted nights, during which sleep was allowed only between 1 am and 6 am, and three recovery nights of 8 hours sleep (11 pm to 7 am). Myeloperoxidase-modified low-density lipoprotein levels increased during the sleep-restricted period indicating an oxidative stress. A significant increase in the quantity of slow-wave sleep was measured during the first recovery night. After this first recovery night, insulin-like growth factor-1 levels increased and myeloperoxidase concentration peaked. CONCLUSIONS: We observed for the first time that sleep restriction and the recovery process are associated with differential changes in blood biomarkers of cardiovascular disease

    Modelling mammalian energetics: the heterothermy problem

    Get PDF
    Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models

    Quantifying garnet-melt trace element partitioning using lattice-strain theory: New crystal-chemical and thermodynamic constraints

    Get PDF
    Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure (P), temperature (T), and composition (X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site,

    Comparative transcriptomic analysis reveals similarities and dissimilarities in saccharomyces cerevisiae wine strains response to nitrogen availability

    Get PDF
    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations

    Conceptual comparison of constructs as first step in data harmonization: Parental sensitivity, child temperament, and social support as illustrations

    Get PDF
    This article presents a strategy for the initial step of data harmonization in Individual Participant Data syntheses, i.e., making decisions as to which measures operationalize the constructs of interest - and which do not. This step is vital in the process of data harmonization, because a study can only be as good as its measures. If the construct validity of the measures is in question, study results are questionable as well. Our proposed strategy for data harmonization consists of three steps. First, a unitary construct is defined based on the existing literature, preferably on the theoretical framework surrounding the construct. Second, the various instruments used to measure the construct are evaluated as operationalizations of this construct, and retained or excluded based on this evaluation. Third, the scores of the included measures are recoded on the same metric. We illustrate the use of this method with three example constructs focal to the Collaboration on Attachment Transmission Synthesis (CATS) study: parental sensitivity, child temperament, and social support. This process description may aid researchers in their data pooling studies, filling a gap in the literature on the first step of data harmonization. • Data harmonization in studies using combined datasets is of vital importance for the validity of the study results. • We have developed and illustrated a strategy on how to define a unitary construct and evaluate whether instruments are operationalizations of this construct as the initial step in the harmonization process. • This strategy is a transferable and reproducible method to apply to the data harmonization process

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10-4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10-7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies

    Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups

    Get PDF
    The APOE locus is strongly associated with risk for developing Alzheimer's disease and dementia with Lewy bodies. In particular, the role of the APOE ϵ4 allele as a putative driver of α-synuclein pathology is a topic of intense debate. Here, we performed a comprehensive evaluation in 2466 dementia with Lewy bodies cases versus 2928 neurologically healthy, aged controls. Using an APOE-stratified genome-wide association study approach, we found that GBA is associated with risk for dementia with Lewy bodies in patients without APOE ϵ4 (P = 6.58 × 10-9, OR = 3.41, 95% CI = 2.25-5.17), but not with dementia with Lewy bodies with APOE ϵ4 (P = 0.034, OR = 1.87, 95%, 95% CI = 1.05-3.37). We then divided 495 neuropathologically examined dementia with Lewy bodies cases into three groups based on the extent of concomitant Alzheimer's disease co-pathology: Pure dementia with Lewy bodies (n = 88), dementia with Lewy bodies with intermediate Alzheimer's disease co-pathology (n = 66) and dementia with Lewy bodies with high Alzheimer's disease co-pathology (n = 341). In each group, we tested the association of the APOE ϵ4 against the 2928 neurologically healthy controls. Our examination found that APOE ϵ4 was associated with dementia with Lewy bodies + Alzheimer's disease (P = 1.29 × 10-32, OR = 4.25, 95% CI = 3.35-5.39) and dementia with Lewy bodies + intermediate Alzheimer's disease (P = 0.0011, OR = 2.31, 95% CI = 1.40-3.83), but not with pure dementia with Lewy bodies (P = 0.31, OR = 0.75, 95% CI = 0.43-1.30). In conclusion, although deep clinical data were not available for these samples, our findings do not support the notion that APOE ϵ4 is an independent driver of α-synuclein pathology in pure dementia with Lewy bodies, but rather implicate GBA as the main risk gene for the pure dementia with Lewy bodies subgroup

    Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    BACKGROUND: Therapeutic trials are now underway in genetic forms of frontotemporal dementia (FTD) but clinical outcome measures are limited. The two most commonly used measures, the Clinical Dementia Rating (CDR)+National Alzheimer’s Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) and the FTD Rating Scale (FRS), have yet to be compared in detail in the genetic forms of FTD. METHODS: The CDR+NACC FTLD and FRS were assessed cross-sectionally in 725 consecutively recruited participants from the Genetic FTD Initiative: 457 mutation carriers (77 microtubule-associated protein tau (MAPT), 187 GRN, 193 C9orf72) and 268 family members without mutations (non-carrier control group). 231 mutation carriers (51 MAPT, 92 GRN, 88 C9orf72) and 145 non-carriers had available longitudinal data at a follow-up time point. RESULTS: Cross-sectionally, the mean FRS score was lower in all genetic groups compared with controls: GRN mutation carriers mean 83.4 (SD 27.0), MAPT mutation carriers 78.2 (28.8), C9orf72 mutation carriers 71.0 (34.0), controls 96.2 (7.7), p<0.001 for all comparisons, while the mean CDR+NACC FTLD Sum of Boxes was significantly higher in all genetic groups: GRN mutation carriers mean 2.6 (5.2), MAPT mutation carriers 3.2 (5.6), C9orf72 mutation carriers 4.2 (6.2), controls 0.2 (0.6), p<0.001 for all comparisons. Mean FRS score decreased and CDR+NACC FTLD Sum of Boxes increased with increasing disease severity within each individual genetic group. FRS and CDR+NACC FTLD Sum of Boxes scores were strongly negatively correlated across all mutation carriers (r_{s} =−0.77, p<0.001) and within each genetic group (r_{s} =−0.67 to −0.81, p<0.001 in each group). Nonetheless, discrepancies in disease staging were seen between the scales, and with each scale and clinician-judged symptomatic status. Longitudinally, annualised change in both FRS and CDR+NACC FTLD Sum of Boxes scores initially increased with disease severity level before decreasing in those with the most severe disease: controls −0.1 (6.0) for FRS, −0.1 (0.4) for CDR+NACC FTLD Sum of Boxes, asymptomatic mutation carriers −0.5 (8.2), 0.2 (0.9), prodromal disease −2.3 (9.9), 0.6 (2.7), mild disease −10.2 (18.6), 3.0 (4.1), moderate disease −9.6 (16.6), 4.4 (4.0), severe disease −2.7 (8.3), 1.7 (3.3). Sample sizes were calculated for a trial of prodromal mutation carriers: over 180 participants per arm would be needed to detect a moderate sized effect (30%) for both outcome measures, with sample sizes lower for the FRS. CONCLUSIONS: Both the FRS and CDR+NACC FTLD measure disease severity in genetic FTD mutation carriers throughout the timeline of their disease, although the FRS may be preferable as an outcome measure. However, neither address a number of key symptoms in the FTD spectrum, for example, motor and neuropsychiatric deficits, which future scales will need to incorporate

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination
    corecore