614 research outputs found

    Sexual species are separated by larger genetic gaps than asexual species in rotifers.

    No full text
    Why organisms diversify into discrete species instead of showing a continuum of genotypic and phenotypic forms is an important yet rarely studied question in speciation biology. Does species discreteness come from adaptation to fill discrete niches or from interspecific gaps generated by reproductive isolation? We investigate the importance of reproductive isolation by comparing genetic discreteness, in terms of intra- and interspecific variation, between facultatively sexual monogonont rotifers and obligately asexual bdelloid rotifers. We calculated the age (phylogenetic distance) and average pairwise genetic distance (raw distance) within and among evolutionarily significant units of diversity in six bdelloid clades and seven monogonont clades sampled for 4211 individuals in total. We find that monogonont species are more discrete than bdelloid species with respect to divergence between species but exhibit similar levels of intraspecific variation (species cohesiveness). This pattern arises because bdelloids have diversified into discrete genetic clusters at a faster net rate than monogononts. Although sampling biases or differences in ecology that are independent of sexuality might also affect these patterns, the results are consistent with the hypothesis that bdelloids diversified at a faster rate into less discrete species because their diversification does not depend on the evolution of reproductive isolation

    An improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy

    Get PDF
    The discrimination of ECG signals using nonlinear dynamic parameters is of crucial importance in the cardiac disease therapy and chaos control for arrhythmia defibrillation in the cardiac system. However, the discrimination results of previous studies using features such as maximal Lyapunov exponent (λ max) and correlation dimension (D 2) alone are somewhat limited in recognition rate. In this paper, improved methods for computing λ max and D 2 are purposed. Another parameter from recurrence quantification analysis is incorporated to the new multi-feature Bayesian classifier with λ max and D 2 so as to improve the discrimination power. Experimental results have verified the prediction using Fisher discriminant that the maximal vertical line length (V max) from recurrence quantification analysis is the best to distinguish different ECG classes. Experimental results using the MIT-BIH Arrhythmia Database show improved and excellent overall accuracy (96.3%), average sensitivity (96.3%) and average specificity (98.15%) for discriminating sinus, premature ventricular contraction and ventricular flutter signals. © 2005 IEEE.published_or_final_version27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, 17-18 January 2006. In Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2005, p. 2459-246

    Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry

    Get PDF
    With the advent of intelligent manufacturing, phase measuring deflectometry (PMD) has been widely studied for the measurement of the three-dimensional (3D) shape of specular objects. However, existing PMDs cannot measure objects having discontinuous specular surfaces. This paper presents a new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the gradient. Two relevant parameters are calibrated using a machine vision-based method. On the basis of the derived model, a full-field 3D measuring system was developed. The accuracy of the system was evaluated using a mirror with known positions along an accurate translating stage. The 3D shape of a monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having isolated and/or discontinuous surfaces accurately and effectively

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

    Get PDF
    BACKGROUND: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. METHODS: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. RESULTS: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. CONCLUSIONS: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses

    Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    Get PDF
    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se

    Does sex matter in the associations between classic risk factors and fatal coronary heart disease in populations from the Asia-Pacific region?

    Get PDF
    Background: There is much interest in promoting healthy heart awareness among women. However, little is known about the reasons behind the lower rates of heart disease among women compared with men, and why this risk difference diminishes with age. Previous comparative studies have generally had insufficient numbers of women to quantify such differences reliably. Methods: We carried out an individual participant data meta-analysis of 39 cohort studies (32 from Asian countries and 7 from Australia and New Zealand). Cox models were used to estimate hazard ratios (HR) for coronary death, comparing men to women. Further adjustments were made for several proven coronary risk factors to quantify their contributions to the sex differential. Sex interactions were tested for the same risk factors. Results: During 4 million person-years of follow-up, there were 1989 (926 female) deaths from coronary heart disease (CHD). The age-adjusted and study-adjusted male/female HR (95% confidence interval [95% CI]) was 2.05 (1.89-2.22). At baseline, 54% of men vs. 7% of women were current smokers; hence, adjustment for smoking explained the largest component (20%) of this HR. A significant sex interaction was observed between systolic blood pressure (SBP) and CHD mortality such that a 10 mm Hg increase was associated with a 15% greater increase in the relative risk (RR) of coronary death in women compared with men (p = 0.002). Conclusions: Only a small amount of the sex differential in coronary death could be explained by differences in the prevalence of classic risk factors. Alternative explanations are required to explain the age-related attenuation of the sex difference in CHD risk. © Mary Ann Liebert, Inc.published_or_final_versio
    corecore