73 research outputs found

    Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tReviewExperimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.Internationale Stichting Alzheimer Onderzoek (ISAO)Netherlands Organization for Scientific Research (NWO)Maastricht University Medical Centre 

    Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sensitivity and specificity of 18S rRNA polymerase chain reaction (PCR) in the detection of fungal aetiology of microbial keratitis was determined in thirty patients with clinical diagnosis of microbial keratitis.</p> <p>Methods</p> <p>Corneal scrapings from patients were used for Gram stain, culture and PCR analysis. PCR was performed with primer pairs targeted to the 18S rRNA gene. The result of the PCR was compared with conventional culture and Gram staining method. The PCR positive samples were identified by DNA sequencing of the internal transcribed spacer (ITS) region of the rRNA gene. Main outcome measures were sensitivity and specificity of PCR in the detection of fungus in corneal keratitis.</p> <p>Results</p> <p>Combination of microscopy and culture gave a positive result in 11 of 30 samples of microbial keratitis. PCR detected 10 of 11 samples that were positive by conventional method. One of the 19 samples that was negative by conventional method was positive by PCR. Statistical analysis revealed that the PCR to have a sensitivity of 90.9% and specificity of 94.7% in the detection of a fungal aetiology in microbial keratitis.</p> <p>Conclusion</p> <p>PCR is a rapid, sensitive and useful method to detect fungal aetiology in microbial keratitis.</p

    Real-time visualization of heterotrimeric G protein Gq activation in living cells

    Get PDF
    Contains fulltext : 97296.pdf (publisher's version ) (Open Access)BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Ggamma2 subunit and a Galphaq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Ggamma2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity

    Mifepristone Prevents Stress-Induced Apoptosis in Newborn Neurons and Increases AMPA Receptor Expression in the Dentate Gyrus of C57/BL6 Mice

    Get PDF
    Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators

    CODE-EHR best practice framework for the use of structured electronic healthcare records in clinical research

    Get PDF
    Big data is central to new developments in global clinical science aiming to improve the lives of patients. Technological advances have led to the routine use of structured electronic healthcare records with the potential to address key gaps in clinical evidence. The covid-19 pandemic has demonstrated the potential of big data and related analytics, but also important pitfalls. Verification, validation, and data privacy, as well as the social mandate to undertake research are key challenges. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including patient representatives, clinicians, scientists, regulators, journal editors and industry. We propose the CODE-EHR Minimum Standards Framework as a means to improve the design of studies, enhance transparency and develop a roadmap towards more robust and effective utilisation of healthcare data for research purposes

    Behavioral genetics and taste

    Get PDF
    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link

    Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies

    No full text
    Adult hippocampal neurogenesis plays a critical role in a wide spectrum of hippocampus-dependent functions. Brain pathologies that involve the hippocampus like epilepsy, stroke, and traumatic brain injury, are commonly associated with cognitive impairments and mood disorders. These insults can affect neural stem cells and the subsequent neurogenic cascade in the hippocampus, resulting in the induction of aberrant neurogenesis, which is thought to compromise hippocampal network function, thereby hampering hippocampus-dependent behavior. We here summarize recent preclinical literature on hippocampal insult-induced changes in neurogenesis and based on that, we propose that normalizing aberrant neurogenesis post-insult may help to prevent or rescue behavioral deficits which could help develop novel therapeutic strategies.status: publishe
    • …
    corecore