409 research outputs found

    Modelling dependency networks to inform data structures in BIM and smart cities

    Get PDF
    The pervasive deployment of "smart city" and "smart building" projects in cities world-wide is driving innovation on many fronts including; technology, telematics, engineering and entrepreneurship. This paper focuses on the technical and engineering perspectives of BIM and smart cities, by extending building and urban morphology studies as to respond to the challenges posed by Big Data, and smart infrastructure. The proposed framework incorporates theoretical and modelling descriptions to verify how network-based models can act as the backbone skeletal representation of both building and urban complexity, and yet relate to environmental performance and smart infrastructure. The paper provides some empirical basis to support data information models through building dependency networks as to represent the relationships between different existing and smart infrastructure components. These dependency networks are thought to inform decisions on how to represent building and urban data sets in response to different social and environmental performance requirements, feeding that into void and solid descriptions of data maturity models. It is concluded that network-based models are fundamental to comprehend and represent the complexity of cities and inform urban design and public policy practices, in the design and operation phases of infrastructure projects

    Drug-Initiated Synthesis of Cladribine-Based Polymer Prodrug Nanoparticles: Biological Evaluation and Structure Activity Relationships

    Get PDF
    International audienceBy using two reversible deactivation radical polymerization techniques, either nitroxide-mediated polymerization or reversible addition-fragmentation chain transfer polymerization, the "drug-initiated" approach was applied to cladribine (CdA) as an anticancer drug to synthesize small libraries of well-defined and self-stabilized CdA-based polymer prodrug nanoparticles, differing from the nature and the molar mass of the grown polymer, and the nature of the linker between CdA and the polymer, thus allowing structure-cytotoxicity relationships to be determined. Their biological evaluation was investigated in vitro on L1210 cancer cells. The preparation of fluorescent CdA-based nanoparticles with excellent imaging ability was also reported by applying the "drug-initiated" approach to an aggregation-induced emission-active dye

    Combination antiretroviral drugs in PLGA nanoparticle for HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination antiretroviral (AR) therapy continues to be the mainstay for HIV treatment. However, antiretroviral drug nonadherence can lead to the development of resistance and treatment failure. We have designed nanoparticles (NP) that contain three AR drugs and characterized the size, shape, and surface charge. Additionally, we investigated the <it>in vitro </it>release of the AR drugs from the NP using peripheral blood mononuclear cells (PBMCs).</p> <p>Methods</p> <p>Poly-(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing ritonavir (RTV), lopinavir (LPV), and efavirenz (EFV) were fabricated using multiple emulsion-solvent evaporation procedure. The nanoparticles were characterized by electron microscopy and zeta potential for size, shape, and charge. The intracellular concentration of AR drugs was determined over 28 days from NPs incubated with PBMCs. Macrophages were imaged by fluorescent microscopy and flow cytometry after incubation with fluorescent NPs. Finally, macrophage cytotoxicity was determined by MTT assay.</p> <p>Results</p> <p>Nanoparticle size averaged 262 ± 83.9 nm and zeta potential -11.4 ± 2.4. AR loading averaged 4% (w/v). Antiretroviral drug levels were determined in PBMCs after 100 μg of NP in 75 μL PBS was added to media. Intracellular peak AR levels from NPs (day 4) were RTV 2.5 ± 1.1; LPV 4.1 ± 2.0; and EFV 10.6 ± 2.7 μg and continued until day 28 (all AR ≥ 0.9 μg). Free drugs (25 μg of each drug in 25 μL ethanol) added to PBMCs served as control were eliminated by 2 days. Fluorescence microscopy and flow cytometry demonstrated phagocytosis of NP into monocytes-derived macrophages (MDMs). Cellular MTT assay performed on MDMs demonstrated that NPs are not significantly cytotoxic.</p> <p>Conclusion</p> <p>These results demonstrated AR NPs could be fabricated containing three antiretroviral drugs (RTV, LPV, EFV). Sustained release of AR from PLGA NP show high drug levels in PBMCs until day 28 without cytotoxicity.</p

    A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles

    Get PDF
    Poly(MePEG2000cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to reach the rat central nervous system after intravenous injection. For insight into the transport of colloidal systems across the blood-brain barrier (BBB), we developed a relevant in vitro rat BBB model consisting of a coculture of rat brain endothelial cells (RBECs) and rat astrocytes. The RBECs used in our model displayed and retained structural characteristics of brain endothelial cells, such as expression of P-glycoprotein, occludin and ZO-1, and immunofluorescence studies showed the specific localization of occludin and ZO1. The high values of transendothelial electrical resistance and low permeability coefficients of marker molecules demonstrated the functionality of this model. The comparative passage of polyhexadecylcyanoacrylate and PEG-PHDCA nanoparticles through this model was investigated, showing a higher passage of PEGylated nanoparticles, presumably by endocytosis. This result was confirmed by confocal microscopy. Thanks to a good in vitro/in vivo correlation, this rat BBB model will help in understanding the mechanisms of nanoparticle translocation and in designing new types of colloidal carriers as brain delivery systems

    Comparison of Effects of Ivabradine versus Carvedilol in Murine Model with the Coxsackievirus B3-Induced Viral Myocarditis

    Get PDF
    BACKGROUND: Elevated heart rate is associated with increased cardiovascular morbidity. The selective I(f) current inhibitor ivabradine reduces heart rate without affecting cardiac contractility, and has been shown to be cardioprotective in the failing heart. Ivabradine also exerts some of its beneficial effects by decreasing cardiac proinflammatory cytokines and inhibiting peroxidants and collagen accumulation in atherosclerosis or congestive heart failure. However, the effects of ivabradine in the setting of acute viral myocarditis and on the cytokines, oxidative stress and cardiomyocyte apoptosis have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: The study was designed to compare the effects of ivabradine and carvedilol in acute viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of ivabradine and carvedilol (a nonselective β-adrenoceptor antagonist) on myocardial histopathological changes, cardiac function, plasma noradrenaline, cytokine levels, cardiomyocyte apoptosis, malondialdehyde and superoxide dismutase contents were studied. Both ivabradine and carvedilol similarly and significantly reduced heart rate, attenuated myocardial lesions and improved the impairment of left ventricular function. In addition, ivabradine treatment as well as carvedilol treatment showed significant effects on altered myocardial cytokines with a decrease in the amount of plasma noradrenaline. The increased myocardial MCP-1, IL-6, and TNF-α. in the infected mice was significantly attenuated in the ivabradine treatment group. Only carvedilol had significant anti-oxidative and anti-apoptoic effects in coxsackievirus B3-infected mice. CONCLUSIONS/SIGNIFICANCE: These results show that the protective effects of heart rate reduction with ivabradine and carvedilol observed in the acute phase of coxsackievirus B3 murine myocarditis may be due not only to the heart rate reduction itself but also to the downregulation of inflammatory cytokines

    Maternal Serologic Screening to Prevent Congenital Toxoplasmosis: A Decision-Analytic Economic Model

    Get PDF
    We constructed a decision-analytic and cost-minimization model to compare monthly maternal serological screening for congenital toxoplasmosis, prenatal treatment, and post-natal follow-up and treatment according to the current French protocol, versus no systematic screening or perinatal treatment. Costs are based on published estimates of lifetime societal costs of developmental disabilities and current diagnostic and treatment costs. Probabilities are based on published results and clinical practice in the United States and France. We use sensitivity analysis to evaluate robustness of results. We find that universal monthly maternal screening for congenital toxoplasmosis with follow-up and treatment, following the French (Paris) protocol, leads to savings of 620perchildscreened.Resultsarerobusttochangesintestcosts,valueofstatisticallife,seroprevalenceinwomenofchildbearingage,fetallossduetoamniocentesis,incidenceofprimaryT.gondiiinfectionduringpregnancy,andtobivariateanalysisoftestcostsandincidenceofprimaryT.gondiiinfection.Giventheparametersinthismodelandamaternalscreeningtestcostof620 per child screened. Results are robust to changes in test costs, value of statistical life, seroprevalence in women of childbearing age, fetal loss due to amniocentesis, incidence of primary T. gondii infection during pregnancy, and to bivariate analysis of test costs and incidence of primary T. gondii infection. Given the parameters in this model and a maternal screening test cost of 12, screening is cost-saving for rates of congenital infection above 1 per 10,000 live births. Universal screening according to the French protocol is cost saving for the US population within broad parameters for costs and probabilities

    LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains

    Get PDF
    Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains

    A Set of 100 Chloroplast DNA Primer Pairs to Study Population Genetics and Phylogeny in Monocotyledons

    Get PDF
    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted Repeat region (IR). Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae), Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae), Digitaria excilis and Pennisetum glaucum (Poaceae). The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP) while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR). We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA) are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies

    Preparation of mupirocin-loaded polymeric nanocapsules using essential oil of rosemary

    Get PDF
    Abstract The purpose of this study was to prepare and characterize mupirocin-loaded polymeric nanocapsules using two different oils and to develop and validate an analytical method for quantitative determination by high performance liquid chromatography. The mean size of the nanoparticles was 233.05 nm and 275.03 nm for nanocapsules with a rosemary oil like oily core and caprylic/capric triglyceride, respectively, and a good polydispersity index below 0.25 for both formulations. The nanocapsules showed good stability when stored at 40 ºC and room temperature for 30 days. The quantitative method was performed with a mobile phase consisting of ammonium ammonium acetate (0.05 M adjusted to pH 5.0 with acetic acid) and acetonitrile 60:40 (v/v); the flow rate was 0.8 mL/min, UV detection at 230 nm. The analytical method was linear in the range of 5.0-15.0 µg/mL, specific for both oils, accurate, precise (intermediate precision RSD = 1.68% and repeatability RSD = 0.81%) and robust under the evaluated conditions. Therefore, this method can be performed for quantification of mupirocin in polymeric nanocapsules containing both oils
    corecore