1,054 research outputs found

    The use of hyperspectral imaging for cake moisture prediction

    Get PDF
    In this paper, hyperspectral imaging is demonstrated to be a valid method for predicting the moisture content of baked sponge cakes. The application of this technology in the cake production environment, empowered by sophisticated signal & image processing techniques and prediction algorithms has the potential to provide on-line, real-time, non-destructive cake moisture monitoring

    ComeHere: Exploiting ethereum for secure sharing of health-care data

    Get PDF
    The problem of protecting sensitive data like medical records, and enabling the access only to authorized entities is currently a challenge. Current solutions often require trusting some centralized entity which is in charge of managing the data. The disruptive technology of blockchains may offer the possibility to change the current scenario and give to the users the control on their personal data. In this paper we propose ComeHere, a system able to store medical records and to exploit the blockchain technology to control and track the access right transfer on the blockchain. The paper shows the current status of the project, presents a preliminary proof-of-concept implementation and discusses the future improvements of the system, and some critical issues which are still open.Engineering and Physical Sciences Research Council (EPSRC)BioBeats Group Lt

    An extracellular transglutaminase is required for apple pollen tube growth

    Get PDF
    An extracellular form of the calcium-dependent protein-crosslinking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein:His6– Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activitywas observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization

    The Intrinsic Alignment of Dark Halo Substructures

    Full text link
    We investigate the intrinsic alignments of dark halo substructures with their host halo major-axis orientations both analytically and numerically. Analytically, we derive the probability density distribution of the angles between the minor axes of the substructures and the major axes of their host halos from the physical principles, under the assumption that the substructure alignment on galaxy scale is a consequence of the tidal fields of the host halo gravitational potential. Numerically, we use a sample of four cluster-scale halos and their galaxy-scale substructures from recent high-resolution N-body simulations to measure the probability density distribution. We compare the numerical distribution with the analytic prediction, and find that the two results agree with each other very well. We conclude that our analytic model provides a quantitative physical explanation for the intrinsic alignment of dark halo substructures. We also discuss the possibility of discriminating our model from the anisotropic infall scenario by testing it against very large N-body simulations in the future.Comment: accepted version, ApJL in press, minor revision, 12 pages, 2 figure

    Weak lensing surveys and the intrinsic correlation of galaxy ellipticities

    Get PDF
    We explore the possibility that an intrinsic correlation between galaxy ellipticities arising during the galaxy formation process may account for part of the shear signal recently reported by several groups engaged in weak lensing surveys. Using high resolution N-body simulations we measure the projected ellipticities of dark matter halos and their correlations as a function of pair separation. With this simplifying, but not necessarily realistic assumption (halo shapes as a proxy for galaxy shapes), we find a positive detection of correlations up to scales of at least 20 h^-1mpc (limited by the box size). The signal is not strongly affected by variations in the halo finding technique, or by the resolution of the simulations. We translate our 3d results into angular measurements of ellipticity correlation functions and shear variance which can be directly compared to observations. We also measure similar results from simulated angular surveys made by projecting our simulation boxes onto the plane of the sky and applying a radial selection function. Interestingly, the shear variance we measure is a small, but not entirely negligible fraction (from ~10-20 %) of that seen by the observational groups, and the ellipticity correlation functions approximately mimic the functional form expected to be caused by weak lensing. The amplitude depends on the width in redshift of the galaxy distribution. If photometric redshifts are used to pick out a screen of background galaxies with a small width, then the intrinsic correlation may become comparable to the weak lensing signal. Although we are dealing with simulated dark matter halos, whether there is a signal from real galaxies could be checked with a nearby sample with known redshifts.Comment: 12 pages, 11 ps figures, emulateapj.sty, submitted to Ap

    A prospective study of the impact of serial troponin measurements on the diagnosis of myocardial infarction and hospital and six-month mortality in patients admitted to ICU with non-cardiac diagnoses.

    Get PDF
    INTRODUCTION: Troponin T (cTnT) elevation is common in patients in the Intensive Care Unit (ICU) and associated with morbidity and mortality. Our aim was to determine the epidemiology of raised cTnT levels and contemporaneous electrocardiogram (ECG) changes suggesting myocardial infarction (MI) in ICU patients admitted for non-cardiac reasons. METHODS: cTnT and ECGs were recorded daily during week 1 and on alternate days during week 2 until discharge from ICU or death. ECGs were interpreted independently for the presence of ischaemic changes. Patients were classified into four groups: (i) definite MI (cTnT ≥15 ng/L and contemporaneous changes of MI on ECG), (ii) possible MI (cTnT ≥15 ng/L and contemporaneous ischaemic changes on ECG), (iii) troponin rise alone (cTnT ≥15 ng/L), or (iv) normal. Medical notes were screened independently by two ICU clinicians for evidence that the clinical teams had considered a cardiac event. RESULTS: Data from 144 patients were analysed (42% female; mean age 61.9 (SD 16.9)). A total of 121 patients (84%) had at least one cTnT level ≥15 ng/L. A total of 20 patients (14%) had a definite MI, 27% had a possible MI, 43% had a cTNT rise without contemporaneous ECG changes, and 16% had no cTNT rise. ICU, hospital and 180-day mortality was significantly higher in patients with a definite or possible MI. CONCLUSIONS: The majority of critically ill patients (84%) had a cTnT rise and 41% met criteria for a possible or definite MI of whom only 20% were recognised clinically. Mortality up to 180 days was higher in patients with a cTnT rise

    Hole-doping dependence of percolative phase separation in Pr_(0.5-delta)Ca_(0.2+delta)Sr_(0.3)MnO_(3) around half doping

    Full text link
    We address the problem of the percolative phase separation in polycrystalline samples of Pr0.5δ_{0.5-\delta}Ca0.2+δ_{0.2+\delta}Sr0.3_{0.3}MnO3_3 for 0.04δ0.04-0.04\leq \delta \leq 0.04 (hole doping nn between 0.46 and 0.54). We perform measurements of X-ray diffraction, dc magnetization, ESR, and electrical resistivity. These samples show at TCT_C a paramagnetic (PM) to ferromagnetic (FM) transition, however, we found that for n>0.50n>0.50 there is a coexistence of both of these phases below TCT_C. On lowering TT below the charge-ordering (CO) temperature TCOT_{CO} all the samples exhibit a coexistence between the FM metallic and CO (antiferromagnetic) phases. In the whole TT range the FM phase fraction (XX) decreases with increasing nn. Furthermore, we show that only for n0.50n\leq 0.50 the metallic fraction is above the critical percolation threshold XC15.5X_C\simeq 15.5%. As a consequence, these samples show very different magnetoresistance properties. In addition, for n0.50n\leq 0.50 we observe a percolative metal-insulator transition at TMIT_{MI}, and for TMI<T<TCOT_{MI}<T<T_{CO} the insulating-like behavior generated by the enlargement of XX with increasing TT is well described by the percolation law ρ1=σ(XXC)t\rho ^{-1}=\sigma \sim (X-X_C)^t, where tt is a critical exponent. On the basis of the values obtained for this exponent we discuss different possible percolation mechanisms, and suggest that a more deep understanding of geometric and dimensionality effects is needed in phase separated manganites. We present a complete TT vs nn phase diagram showing the magnetic and electric properties of the studied compound around half doping.Comment: 9 text pages + 12 figures, submitted to Phys. Rev.

    Size and dimensionality effects in superconducting Mo thin films

    Get PDF
    Molybdenum is a low Tc, type I superconductor whose fundamental properties are poorly known. Its importance as an essential constituent of new high performance radiation detectors, the so-called transition edge sensors (TESs) calls for better characterization of this superconductor, especially in thin film form. Here we report on a study of the basic superconducting features of Mo thin films as a function of their thickness. The resistivity is found to rise and the critical temperature decreases on decreasing film thickness, as expected. More relevant, the critical fields along and perpendicular to the film plane are markedly different, thickness dependent and much larger than the thermodynamic critical field of Mo bulk. These results are consistent with a picture of type II 2D superconducting films, and allow estimates of the fundamental superconducting lengths of Mo. The role of morphology in determining the 2D and type II character of the otherwise type I molybdenum is discussed. The possible consequences of this behaviour on the performance of radiation detectors are also addresse

    Longitudinal brain atrophy rates in transient ischemic attack and minor ischemic stroke patients and cognitive profiles

    Get PDF
    Introduction: Patients with transient ischemic attack (TIA) and minor stroke demonstrate cognitive impairment, and a four-fold risk of late-life dementia. Aim: To study the extent to which the rates of brain volume loss in TIA patients differ from healthy controls and how they are correlated with cognitive impairment. Methods: TIA or minor stroke patients were tested with a neuropsychological battery and underwent T1 weighted volumetric magnetic resonance imaging scans at fixed intervals over a 3 years period. Linear mixed effects regression models were used to compare brain atrophy rates between groups, and to determine the relationship between atrophy rates and cognitive function in TIA and minor stroke patients. Results: Whole brain atrophy rates were calculated for the TIA and minor stroke patients; n = 38 between 24 h and 18 months, and n = 68 participants between 18 and 36 months, and were compared to healthy controls. TIA and minor stroke patients demonstrated a significantly higher whole brain atrophy rate than healthy controls over a 3 years interval (p = 0.043). Diabetes (p = 0.012) independently predicted higher atrophy rate across groups. There was a relationship between higher rates of brain atrophy and processing speed (composite P = 0.047 and digit symbol coding P = 0.02), but there was no relationship with brain atrophy rates and memory or executive composite scores or individual cognitive tests for language (Boston naming, memory recall, verbal fluency or Trails A or B score). Conclusion: TIA and minor stroke patients experience a significantly higher rate of whole brain atrophy. In this cohort of TIA and minor stroke patients changes in brain volume over time precede cognitive decline
    corecore