223 research outputs found

    Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen

    Get PDF
    This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading methods were used to prepare the nanosuspension and inclusion complex of naproxen, respectively. We also used an in vitro protease inhibitory assay to investigate the anti-inflammatory effect of modified naproxen formulations. Physiochemical properties of modified naproxen formulations were analyzed using UV, IR spectra, and solubility studies. Beta-cyclodextrin inclusion complex of naproxen was found to have a lower percentage of antitryptic activity than a pure nanosuspension of naproxen did. In conclusion, nanosuspension of naproxen has a greater anti-inflammatory effect than the other two tested formulations. This is because the nanosuspension formulation reduces the particle size of naproxen. Based on these results, the antitryptic activity of naproxen nanosuspension was noteworthy; therefore, this formulation can be used for the management of inflammatory disorders

    The first ultracompact Roche lobe-filling hot subdwarf binary

    Get PDF
    We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane named the Zwicky Transient Facility and exhibits a period of Porb=39.3401(1) min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of Teff=42,400±300 K and a surface gravity of log(g)=5.77±0.05. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass MsdOB=0.337±0.015 M⊙ and a white dwarf accretor with a mass MWD=0.545±0.020 M⊙. Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a 2.5−2.8 M⊙ star lost its envelope when crossing the Hertzsprung Gap. To match its current Porb, Teff, log(g), and masses, we estimate a post-common envelope period of Porb≈150 min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of ≈0.1 M⊙ and will merge with its carbon/oxygen white dwarf companion after ≈17 Myr and presumably explode as a thermonuclear supernova or form an R CrB star

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    A 62-minute orbital period black widow binary in a wide hierarchical triple

    Get PDF
    Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original ‘black widow’, the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution

    Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    Get PDF
    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα,Θ(f)<(0.1-56)×10-8 erg cm-2 s-1 Hz-1(f/25 Hz)α-1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10-8 sr-1(f/25 Hz)α depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7,5.5, and 7.0)×10-25, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case. © 2017 Published by the American Physical Society

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
    corecore