1,064 research outputs found

    Polarization Effects On Electronic Excitation Of Molecules By Low-energy Electron Impact: Study On E- -furan Scattering

    Get PDF
    The Schwinger multichannel method is applied to study the influence of polarization effects on the electronic excitation of the furan molecule by low-energy electron impact. We discuss the importance of inclusion of these effects through the comparison of theoretical results for the electronic excitation of the B3 2 state of furan obtained with and without the proper treatment of the polarization of the target. The electron-furan scattering presents two prominent shape resonances in the A2 2 and B2 1 symmetries at around the electronic excitation threshold of the B3 2 state (3.7 eV). At this low-energy, the inclusion of polarization effects in the calculation moves to lower energies the resonances positions obtained either in the close-coupling or in the static-exchange level of approximation. This phenomenon strongly influences the electronic excitation process. The present results show that a simple close-coupling calculation cannot be applied for molecular systems with low-energy electronic excitation thresholds around misplaced resonances. © 2008 The American Physical Society.771Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , SCIEAS 0036-8075 10.1126/science.287.5458.1658Sanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , EPJDF6 1434-6060 10.1140/epjd/e2005-00206-6Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93, p. 068101. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.068101Zecca, A., Perazzolli, C., Brunger, M.J., (2005) J. Phys. B, 38, p. 2079. , 0022-3700Mozejko, P., Sanche, L., (2005) Radiat. Phys. Chem., 73, p. 77. , RPCHDM 0969-806X 10.1016/j.radphyschem.2004.10.001König, C., Kopyra, J., Bald, I., Illenberger, E., (2006) Phys. Rev. Lett., 97, p. 018105. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.018105Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , JCPSA6 0021-9606 10.1063/1.2424456Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , JCPSA6 0021-9606 10.1063/1.2263824Bouchiha, D., Gorfinkiel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B, 39, p. 975. , 0022-3700Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) J. Phys. B, 39, p. 255. , 0022-3700Colyer, C.J., Vizcaino, V., Sullivan, J.P., Brunger, M.J., Buckman, S.J., (2007) New J. Phys., 9, p. 41. , NJOPFM 1367-2630 10.1088/1367-2630/9/2/041Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , JCPSA6 0021-9606 10.1063/1.2739514Fleig, T., Knecht, S., Hättig, C., (2007) J. Phys. Chem. A, 111, p. 5482. , 1089-5639Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , JPCAFH 1089-5639 10.1021/jp048759aSulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125, p. 044304. , JCPSA6 0021-9606 10.1063/1.2222370Palmer, M.H., Walker, I.C., Ballard, C.C., Guest, M.F., (1995) Chem. Phys., 192, p. 111. , CMPHC2 0301-0104 10.1016/0301-0104(94)00386-OTakatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , PLRAAN 1050-2947 10.1103/PhysRevA.30.1734Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , PLRAAN 1050-2947 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B, 38, p. 4363. , 0022-3700Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , PRBMDO 0163-1829 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , 0020-7608Chaudhuri, P., Varella N. Do, M.T., De Carvalho, C.R.C., Lima, M.A.P., (2004) Phys. Rev. A, 69, p. 042703. , PLRAAN 1050-2947 10.1103/PhysRevA.69.042703Hunt, W.J., Goddard, W.A., (1969) Chem. Phys. Lett., 3, p. 414. , CHPLBC 0009-2614 10.1016/S0009-2614(99)00340-1Wan, J., Meller, J., Hada, M., Ehara, M., Nakatsujia, H., (2000) J. Chem. Phys., 113, p. 7853. , JCPSA6 0021-9606 10.1063/1.1316034Giuliani, A., Hubin-Franskin, M.-J., (2001) Int. J. Mass Spectrom., 205, p. 163. , 1387-3806Allan, M., Bauschlicher, C.W., (1980) J. Chem. Phys., 72, p. 880. , JCPSA6 0021-9606 10.1063/1.439243Winstead, C., McKoy, V., Bettega, M.H.F., (2005) Phys. Rev. A, 72, p. 042721. , PLRAAN 1050-2947 10.1103/PhysRevA.72.04272

    Electron Scattering From Molecules: Applications Of The Schwinger Multichannel Method To E--co And E--c2h 4 Collisions

    Get PDF
    To illustrate our recent efforts to obtain electronic excitation cross sections of molecules by electron impact, we present in this paper results for the X 1Σ a 3Π and A 1Π transitions of CO obtained with the Schwinger multichannel method. Our results are in good agreement with other theoretical calculations, although not so good when compared with experiments. We also discuss the importance of inclusion of polarization effects to obtain electronic excitation cross sections of some molecules through an example using the C2H4 molecule, which has a triplet state with a low-energy threshold. Finally, we present a very simple rule to estimate integral electronic excitation cross sections using the differential cross section (DCS) at 900, which can be useful to experimentalists using apparatus with difficulties to measure the DCS's at angles around 0 and 180 degrees. We show its efficiency for the present electronic excitation of the C2H4 molecule by electron impact. © 2007 IOP Publishing Ltd.881Garscadden, A., (1992) Z. Phys., 24 (2), pp. 97-99Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287 (5458), pp. 1658-1660Da Costa, R.F., Da Paixão, F.J., Map, L., (2004) J. Phys. B: At. Mol. Phys., 37 (6), pp. 129-L135Da Costa, R.F., Da Paixão, F.J., Map, L., (2005) J. Phys. B: At. Mol. Phys., 38 (24), pp. 4363-4378Da Costa, R.F., Map, L., (2006) Int. J. Quantum Chem., 106 (13), pp. 2664-2676Nonum Da Costa, R.F., Map, L., (2007) Phys. Rev., 75, p. 022705Sun, Q., Winstead, C., McKoy, V., Lima, M.A.P., (1992) J. Chem. Phys., 96 (5), pp. 3531-3535Rescigno, T.N., Schneider, B.I., (1992) Phys. Rev., 45 (5), pp. 2894-2902Takatsuka, K., McKoy, V., (1981) Phys. Rev., 24 (5), pp. 2473-2480Takatsuka, K., McKoy, V., (1984) Phys. Rev., 30 (4), pp. 1734-1740Chaudhuri, P., Varella Do, T.M.N., Carvalho, C.R.C., Map, L., (2004) Nucl. Instrum. Methods Phys. Res., 221, pp. 69-75Chaudhuri, P., Varella Do, T.M.N., Carvalho, C.R.C., Map, L., (2004) Phys. Rev., 69, p. 042703Lane, N.F., (1980) Rev. Mod. Phys., 52 (1), pp. 29-119Sun, Q.Y., Winstead, C., McKoy, V., (1992) Phys. Rev., 46 (11), pp. 6987-6994Morgan, L.A., Tennyson, J., (1993) J. Phys. B: At. Mol. Opt. Phys., 26 (15), pp. 2429-2441Lee, M.-T., MacHado, A.M., Fujimoto, M.M., MacHado, L.E., Brescansin, L.M., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (18), pp. 4285-4301Furlong, J.M., Newell, W.R., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (2), pp. 331-338Leclair, L.R., Trajmar, S., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (22), pp. 5543-5566Zetner, P.W., Kanik, I., Trajmar, S., (1998) J. Phys. B: At. Mol. Opt. Phys., 31 (10), pp. 2395-2413Trajmar, S., Szabo, A., Ostlund, N.S., (1989) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, pp. 194-197Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., Van Veen, E.H., (1976) Chem. Phys. Lett., 41 (3), p. 540Asmis, K.R., Allan, M., (1997) J. Chem. Phys., 106 (17), pp. 7044-7046Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P.

    Endocannabinoid Signaling is Critical for Habit Formation

    Get PDF
    Extended training can induce a shift in behavioral control from goal-directed actions, which are governed by action-outcome contingencies and sensitive to changes in the expected value of the outcome, to habits which are less dependent on action-outcome relations and insensitive to changes in outcome value. Previous studies in rats have shown that interval schedules of reinforcement favor habit formation while ratio schedules favor goal-directed behavior. However, the molecular mechanisms underlying habit formation are not well understood. Endocannabinoids, which can function as retrograde messengers acting through presynaptic CB1 receptors, are highly expressed in the dorsolateral striatum, a key region involved in habit formation. Using a reversible devaluation paradigm, we confirmed that in mice random interval schedules also favor habit formation compared with random ratio schedules. We also found that training with interval schedules resulted in a preference for exploration of a novel lever, whereas training with ratio schedules resulted in less generalization and more exploitation of the reinforced lever. Furthermore, mice carrying either a heterozygous or a homozygous null mutation of the cannabinoid receptor type I (CB1) showed reduced habit formation and enhanced exploitation. The impaired habit formation in CB1 mutant mice cannot be attributed to chronic developmental or behavioral abnormalities because pharmacological blockade of CB1 receptors specifically during training also impairs habit formation. Taken together our data suggest that endocannabinoid signaling is critical for habit formation

    Sliding susceptibility of a rough cylinder on a rough inclined perturbed surface

    Full text link
    A susceptibility function χ(L){\chi}(L) is introduced to quantify some aspects of the intermittent stick-slip dynamics of a rough metallic cylinder of length LL on a rough metallic incline submitted to small controlled perturbations and maintained below the angle of repose. This problem is studied from the experimental point of view and the observed power-law behavior of χ(L){\chi}(L) is justified through the use of a general class of scaling hypotheses.Comment: 14 pages including 5 figure

    Anadenanthera colubrina vell brenan : anti-candida and antibiofilm activities, toxicity and therapeutical action

    Get PDF
    We evaluated the antifungal and antibiofilm potential of the hydroalcoholic extract of bark from Anadenanthera colubrina (vell.) Brenan, known as Angico, against Candida spp. Antifungal activity was evaluated using the microdilution technique through the Minimum Inhibitory and Fungicide Concentrations (MIC and MFC). The antibiofilm potential was tested in mature biofilms formed by Candida species and analyzed through the counting of CFU/mL and scanning electron micrograph (SEM). In vivo toxicity and therapeutic action was evaluated in the Galleria mellonella model. The treatment with the extract, in low doses, was able to reduce the growth of planktonic cells of Candida species. MIC values range between 19.5 and 39 µg/mL and MFC values range between 79 and 625 µg/mL. In addition was able to reduce the number of CFU/mL in biofilms and to cause structural alteration and cellular destruction, observed via SEM. A. colubrina showed low toxicity in the in vivo assay, having not affected the viability of the larvae at doses below 100mg/kg and high potential in the treatment of C. albicans infection. Considering its high antifungal potential, its low toxicity and potential to treatment of infections in in vivo model, A. colubrina extract is a strong candidate for development of a new agent for the treatment of oral candidiasis33CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ552562/2011-

    Geometric Phase, Curvature, and Extrapotentials in Constrained Quantum Systems

    Get PDF
    We derive an effective Hamiltonian for a quantum system constrained to a submanifold (the constraint manifold) of configuration space (the ambient space) by an infinite restoring force. We pay special attention to how this Hamiltonian depends on quantities which are external to the constraint manifold, such as the external curvature of the constraint manifold, the (Riemannian) curvature of the ambient space, and the constraining potential. In particular, we find the remarkable fact that the twisting of the constraining potential appears as a gauge potential in the constrained Hamiltonian. This gauge potential is an example of geometric phase, closely related to that originally discussed by Berry. The constrained Hamiltonian also contains an effective potential depending on the external curvature of the constraint manifold, the curvature of the ambient space, and the twisting of the constraining potential. The general nature of our analysis allows applications to a wide variety of problems, such as rigid molecules, the evolution of molecular systems along reaction paths, and quantum strip waveguides.Comment: 27 pages with 1 figure, submitted to Phys. Rev.

    Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Get PDF
    8 págs.; 2 figs.; 2 tabs.We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.D.B.J. thanks the Australian Research Council (ARC) for financial support provided through a Discovery Early Career Research Award, while M.J.B. also thanks the ARC for their support. M.J.B. acknowledges the Brazilian agency CNPq for his “Special Visiting Professor” position at the Federal University of Juiz de Fora. G.G. acknowledges partial financial support from the Spanish Ministry MINECO (Project No. FIS2012-31230) and the European Union COST Action No. CM1301 (CELINA). Finally R.F.C., M.T.doN.V, M.H.F.B, and M.A.P.L. also acknowledge support from CNPq, while M.T.doN.V. thanks FAPESPPeer Reviewe

    Electronic Excitation Of The Lb2 State Of Furan By Electron Impact

    Get PDF
    We report on recent results obtained in studies involving electronically inelastic electron scattering from furan. In particular, we considered the electronic transition from ground state to the 1B2 excited state. The scattering calculations employed the Schwinger multichannel method implemented with pseudopotentials and were carried out up to a nine-state close-coupling plus polarization level of approximation.388PART 1Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287 (5458), p. 1658. , 10.1126/science.287.5458.1658 0036-8075Pan, X., Cloutier, P., Hunting, D., Sanche, L., (2003) Phys. Rev. Lett., 90 (20), p. 208102. , 10.1103/PhysRevLett.90.208102 0031-9007Huels, M.A., Boudaïffa, B., Cloutier, P., Hunting, D., Sanche, L., (2003) J. Am. Chem. Soc., 125 (15), p. 4467. , 10.1021/ja029527x 0002-7863Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93 (6), p. 068101. , 10.1103/PhysRevLett.93.068101 0031-9007Sanche, L., (2005) Eur. Phys. J., 35 (2), p. 367. , 10.1140/epjd/e2005-00206-6 1434-6060 DFlicker, W.M., Mosher, O.A., Kuppermann, A., (1975) J. Chem. Phys., 64 (4), p. 1315. , 10.1063/1.432397 0021-9606Van Veen, E.H., (1976) Chem. Phys. Lett., 41 (3), p. 535. , 10.1016/0009-2614(76)85411-5 0009-2614Giuliani, A., Hubin-Franskin, M.J., (2001) Int. J. Mass Spectrom., 205 (1-3), p. 163. , 10.1016/S1387-3806(00)00318-3 1387-3806Motte-Tollet, F., Eustatiu, G., Roy, D., (1996) J. Chem. Phys., 105 (17), p. 7448. , 10.1063/1.472572 0021-9606Modelli, A., Burrow, P.D., (2004) J. Phys. Chem., 108 (26), p. 5721. , 10.1021/jp048759a 1089-5639 AMuftakhof, M.V., Mazunov, V.A., Khvostenko, V.I., (1990) Russian Chem. Bulletin, 39 (4), p. 831. , 10.1007/BF00960360 0568-5230Khvostenko, V.I., Vorob'Yov, A.S., Khvostenko, O.G., (1990) J. Phys. B: At. Mol. Opt. Phys., 23 (12), p. 1975. , 10.1088/0953-4075/23/12/008 0953-4075Muftakhof, M.V., Asfandiarov, N.L., Khvostenko, V.I., (1994) J. Electron Spectrosc. Relat. Phenom., 69 (2), p. 165. , 10.1016/0368-2048(94)02047-4 0368-2048Muftakhof, M.V., Mazunov, V.A., Takhistov, V.V., (1994) Russian Chem. Bulletin, 43 (6), p. 988. , 10.1007/BF01558063 1066-5285Dampc, M., Zubek, M., (2008) Int. J. Mass Spectrom., 277 (1-3), p. 52. , 10.1016/j.ijms.2008.04.010 1387-3806Sulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125 (4), p. 044304. , 10.1063/1.2222370 0021-9606Szmytkowski, C., Mozejko, P., Ptasinska-Denga, E., Sabisz, A., (2010) Phys. Rev., 82 (3), p. 032701. , 10.1103/PhysRevA.82.032701 1050-2947 ABettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126 (19), p. 194317. , 10.1063/1.2739514 0021-9606Khakoo, M.A., Muse, J., Ralphs, K., Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2010) Phys. Rev., 81 (6), p. 062716. , 10.1103/PhysRevA.81.062716 1050-2947 ADa Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2008) Phys. Rev., 77 (1), p. 012717. , 10.1103/PhysRevA.77.012717 1050-2947 ATakatsuka, K., McKoy, V., (1981) Phys. Rev., 24, p. 2437. , 0556-2791 ATakatsuka, K., McKoy, V., (1984) Phys. Rev., 30 (4), p. 1734. , 10.1103/PhysRevA.30.1734 0556-2791 ABettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev., 47 (2), p. 1111. , 10.1103/PhysRevA.47.1111 1050-2947 A(1998) CRC Handbook of Chemistry and Physics, , 79th ed. ed Lide D R (Boca Raton: CRC)Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60 (4), p. 821. , 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-Z 0020-7608Dunning Jr., T.H., (1970) J. Chem. Phys., 53 (7), p. 2823. , 10.1063/1.1674408 0021-9606Bauschlicher, C.W., (1980) J. Chem. Phys., 72 (2), p. 880. , 10.1063/1.439243 0021-9606Winstead, C., McKoy, V., (1998) Phys. Rev., 57 (5), p. 3589. , 10.1103/PhysRevA.57.3589 1050-2947 AWinstead, C., McKoy, V., Bettega, M.H.F., (2005) Phys. Rev., 72 (4), p. 042721. , 10.1103/PhysRevA.72.042721 1050-2947 AChaudhuri, P., Varella, M.T.N., Carvalho, C.R.C., Lima, M.A.P., (2004) Nucl. Instrum. Methods Phys. Res., 221, p. 69. , 10.1016/j.nimb.2004.03.033 0168-583X BDa Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B: At. Mol. Phys., 38 (24), p. 4363. , 0953-4075 003Communication, P., Fact, the Study Related with the Electronic Excitation of the 3B2 and 3A1 Excited States of Furan by Electron Impact Has Been Developed in A Collaborative Project Involving Several Groups from Brazil and One Group in the US

    Electron Collisions With α-d -glucose And Β-d -glucose Monomers

    Get PDF
    The development of new alternative routes for production of second generation ethanol from sugarcane biomass poses a challenge to the scientific community. Current research in this field addresses the use of a plasma-based pretreatment of the lignocellulosic raw material. With the aim to provide a theoretical background for this experimental technique we investigate the role of low-energy electrons from the plasma in the rupture of the matrix of cellulosic chains. In this paper, we report calculated cross sections for elastic scattering of low-energy electrons by the α - and Β-D -glucose monomers. The calculations employed the Schwinger multichannel method with pseudopotentials and were carried out at the static-exchange and static-exchange plus polarization levels of approximation. Through the comparison of the results obtained with inclusion of polarization effects we discuss the influence of the different conformations of the hydroxyl group linked to the anomeric carbon on the resonance spectra of these molecules. Resonant structures appearing at different energies for α - and Β -glucose at the low-energy regime of impact energies can be understood as a fingerprint of an "isomeric effect" and suggest that distinct fragmentation mechanisms proceeding via σ* shape resonances may become operative depending on the glucose anomer under consideration. For energies above 15 eV the integral elastic cross sections are very similar for both monomers. Differential cross sections for the glucopyranose anomers considered in this work are typically dominated by a strong forward scattering due to the molecules' large electric dipole moments and, for energies close to the resonances' positions, they display particular features at the intermediate angular region, notably a pronounced f -wave scattering pattern, that are probably associated with the presence of those structures. © 2010 American Institute of Physics.13212Leite, R.C.D., Leal, M.R.L.V., Cortez, L.A.B., Griffin, W.M., Scandiffio, M.I.G., (2009) Energy, 34, p. 655. , ENEYDS 0360-5442,. 10.1016/j.energy.2008.11.001Amorim, J., Corr̂a, J.A.S., Oliveira, C.A., (2008), Patent No. 018080043419 (10 July)Oliveira, C., Souza Corr̂a, J.A., Gomes, M.P., Sismanoglu, B.N., Amorim, J., (2008) Appl. Phys. Lett., 93, p. 041503. , APPLAB 0003-6951,. 10.1063/1.2967016Garscadden, A., (1992) Z. Phys. D: At., Mol. Clusters, 24, p. 97. , ZDACE2 0178-7683,. 10.1007/BF01426692Huo, W.M., Kim, Y.K., (1999) IEEE Trans. Plasma Sci., 27, p. 1225. , ITPSBD 0093-3813,. 10.1109/27.799798Christophorou, L.G., Olthoff, J.K., (2002) Appl. Surf. Sci., 192, p. 309. , ASUSEE 0169-4332,. 10.1016/S0169-4332(02)00033-8Boudaffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., Sanche, L., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , See, for example, SCIEAS 0036-8075, () 10.1126/science.287.5458.1658;, Eur. Phys. J. D EPJDF6 1434-6060 35, 367 (2005) 10.1140/epjd/e2005-00206-6;, J. Am. Chem. Soc. JACSAT 0002-7863 125, 4467 (2003) 10.1021/ja029527x;, Phys. Rev. Lett. PRLTAO 0031-9007 93, 068101 (2004) (and references therein). 10.1103/PhysRevLett.93.068101Mozejko, P., Sanche, L., (2005) Radiat. Phys. Chem., 73, p. 77. , RPCHDM 0969-806X,. 10.1016/j.radphyschem.2004.10.001König, C., Kopyra, J., Bald, I., Illenberger, E., (2006) Phys. Rev. Lett., 97, p. 018105. , PRLTAO 0031-9007,. 10.1103/PhysRevLett.97.018105Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , JCPSA6 0021-9606,. 10.1063/1.2424456Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , JCPSA6 0021-9606,. 10.1063/1.2263824Bouchiha, D., Gorfinkiel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B, 39, p. 975. , JPAPEH 0953-4075,. 10.1088/0953-4075/39/4/021Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) J. Phys. B, 39, p. 255. , JPAPEH 0953-4075,. 10.1088/0953-4075/39/12/L01Colyer, C.J., Vizcaino, V., Sullivan, J.P., Brunger, M.J., Buckman, S.J., (2007) N. J. Phys., 9, p. 41. , 10.1088/1367-2630/9/2/041 1367-2630Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , JCPSA6 0021-9606,. 10.1063/1.2739514Fleig, T., Knecht, S., Hättig, C., (2007) J. Phys. Chem. A, 111, p. 5482. , See, for instance, JPCAFH 1089-5639, () (and references therein). 10.1021/jp0669409Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , JPCAFH 1089-5639,. 10.1021/jp048759aSulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125, p. 044304. , JCPSA6 0021-9606,. 10.1063/1.2222370Gu, J., Xie, Y., Iii, F.S.H., (2005) J. Am. Chem. Soc., 127, p. 1053. , JACSAT 0002-7863,. 10.1021/ja0400990Berdys, J., Skurski, P., Simons, J., (2004) J. Phys. Chem. B, 108, p. 5800. , JPCBFK 1089-5647,. 10.1021/jp049728iRescigno, T.N., Trevisan, C.S., Orel, A.E., (2006) Phys. Rev. Lett., 96, p. 213201. , PRLTAO 0031-9007,. 10.1103/PhysRevLett.96.213201Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , JCPSA6 0021-9606,. 10.1063/1.2727460Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 79, p. 042701. , PLRAAN 1050-2947,. 10.1103/PhysRevA.79.042701Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 80, p. 046702. , PLRAAN 1050-2947,. 10.1103/PhysRevA.80.046702Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2009) Phys. Rev. A, 80, p. 046701. , PLRAAN 1050-2947,. 10.1103/PhysRevA.80.046701Skalick, T., Allan, M., (2004) J. Phys. B, 37, p. 4849. , JPAPEH 0953-4075,. 10.1088/0953-4075/37/24/010Ibnescu, B.C., May, O., Monney, A., Allan, M., (2007) Phys. Chem. Chem. Phys., 9, p. 3163. , PPCPFQ 1463-9076,. 10.1039/b704656aTakatsuka, K., McKoy, V., Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , PLRAAN 1050-2947, () 10.1103/PhysRevA.24.2473;, Phys. Rev. A PLRAAN 1050-2947 30, 1734 (1984). 10.1103/PhysRevA.30.1734Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , PLRAAN 1050-2947,. 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, p. 129. , JPAPEH 0953-4075, () 10.1088/0953-4075/37/6/L03;, J. Phys. B JPAPEH 0953-4075 38, 4363 (2005). 10.1088/0953-4075/38/24/003Chaudhuri, P., Varella, M.T.D.N., Carvalho, C.R.C., Lima, M.A.P., Chaudhuri, P., Varella, M.T.D.N., Carvalho, C.R.C., Lima, M.A.P., (2004) Nucl. Instrum. Methods Phys. Res. B, 221, p. 69. , NIMBEU 0168-583X, () 10.1016/j.nimb.2004.03.033;, Phys. Rev. A PLRAAN 1050-2947 69, 042703 (2004). 10.1103/PhysRevA.69.042703Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2008) Phys. Rev. A, 77, p. 012717. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.012717Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , JCCHDD 0192-8651,. 10.1002/jcc.540141112Cramer, C.J., Truhlar, D.G., (1993) J. Am. Chem. Soc., 115, p. 5745. , JACSAT 0002-7863,. 10.1021/ja00066a046Corchado, J.C., Sánchez, M.L., Aguilar, M.A., (2004) J. Am. Chem. Soc., 126, p. 7311. , JACSAT 0002-7863,. 10.1021/ja0398767Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , PRBMDO 0163-1829,. 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , IJQCB2 0020-7608,. 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-ZWinstead, C., McKoy, V., Winstead, C., McKoy, V., Bettega, M.H.F., (1998) Phys. Rev. A, 57, p. 3589. , PLRAAN 1050-2947, () 10.1103/PhysRevA.57.3589;, Phys. Rev. A PLRAAN 1050-2947 72, 042721 (2005). 10.1103/PhysRevA.72.042721Bettega, M.H.F., Winstead, C., McKoy, V., (2006) Phys. Rev. A, 74, p. 022711. , PLRAAN 1050-2947,. 10.1103/PhysRevA.74.022711Bauschlicher, C.W., (1980) J. Chem. Phys., 72, p. 880. , JCPSA6 0021-9606,. 10.1063/1.439243Bettega, M.H.F., Da Costa, R.F., Lima, M.A.P., (2008) Phys. Rev. A, 77, p. 052706. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.052706Khakoo, M.A., Blumer, J., Keane, K., Campbell, C., Silva, H., Lopes, M.C.A., Winstead, C., Bettega, M.H.F., (2008) Phys. Rev. A, 77, p. 042705. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.04270

    Malaria Diagnosis and Hospitalization Trends, Brazil

    Get PDF
    Malaria Diagnosis and Hospitalization Trends, Brazi
    corecore